Emil Tykesson

Learn More
The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of(More)
Ten years of full-scale experience with enhanced biological phosphorus removal (EBPR) has been evaluated. During the start-up period lack of carbon source was the main operational problem and a higher level of volatile fatty acids was secured by introducing a primary sludge hydrolysis. Acidic thermal sludge hydrolysis was used as the sludge treatment method(More)
Enhanced biological phosphorus removal (EBPR) has been used at many wastewater treatment plants all over the world for many years. In this study a full-scale sludge with good EBPR was tested with P-release batch tests and combined FISH/MAR (fluorescence in situ hybridisation and microautoradiography). Proposed models of PAOs and GAOs (polyphosphate- and(More)
The epimerization of glucuronic acid into iduronic acid adds structural variability to chondroitin/dermatan sulfate polysaccharides. Iduronic acid-containing domains play essential roles in processes such as coagulation, chemokine and morphogen modulation, collagen maturation, and neurite sprouting. Therefore, we generated and characterized, for the first(More)
Distinct from template-directed biosynthesis of nucleic acids and proteins, the enzymatic synthesis of heterogeneous polysaccharides is a complex process that is difficult to study using common analytical tools. Therefore, the mode of action and processivity of those enzymes are largely unknown. Dermatan sulfate epimerase 1 (DS-epi1) is the predominant(More)
We previously reported that the xyloside 2-(6-hydroxynaphthyl) β-d-xylopyranoside (XylNapOH), in contrast to 2-naphthyl β-d-xylopyranoside (XylNap), specifically reduces tumor growth both in vitro and in vivo Although there are indications that this could be mediated by the xyloside-primed glycosaminoglycans (GAGs) and that these differ in composition(More)
Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant deposition of extracellular matrix (ECM) constituents, including glycosaminoglycans (GAGs), that may play a role in remodelling processes by influencing critical mediators such as growth factors. We hypothesize that GAGs may be altered in IPF and that this contribute to create a pro-fibrotic(More)
Proteoglycans (PGs) are macromolecules that consist of long linear polysaccharides, glycosaminoglycan (GAG) chains, covalently attached to a core protein by the carbohydrate xylose. The biosynthesis of GAG chains is initiated by xylosylation of the core protein followed by galactosylation by the galactosyltransferase β4GalT7. Some β-d-xylosides, such as(More)
Monosubstituted naphthoxylosides have been shown to function as substrates for, and inhibitors of, the enzyme β4GalT7, a key enzyme in the biosynthetic pathway leading to glycosaminoglycans and proteoglycans. In this article, we explore the synthesis of 16 xyloside analogs, modified at two different positions, as well as their function as inhibitors of(More)
3'-Phosphoadenosine-5'-phosphosulfate (PAPS) is a key player in the sulfation of biomolecules, but methods for selective measurements are lacking. A liquid chromatography-mass spectrometry (LC-MS) approach for measuring PAPS was developed. A central feature of the method was employing hydrophilic interaction liquid chromatography (HILIC), which is highly(More)