Learn More
Neuroimaging studies of cognitive control have identified two distinct networks with dissociable resting state connectivity patterns. This study, in patients with heterogeneous damage to these networks, demonstrates network independence through a double dissociation of lesion location on two different measures of network integrity: functional correlations(More)
An emerging theory of the neurobiology of category learning postulates that there are separate neural systems supporting the learning of categories based on verbalizeable rules (RB) or through implicit information integration (II). The medial temporal lobe (MTL) is thought to play a crucial role in successful RB categorization, whereas the posterior regions(More)
Although it is generally assumed that brain damage predominantly affects only the function of the damaged region, here we show that focal damage to critical locations causes disruption of network organization throughout the brain. Using resting state fMRI, we assessed whole-brain network structure in patients with focal brain lesions. Only damage to those(More)
Here we review recent functional neuroimaging, neuropsychological and behavioral studies examining the role of the medial temporal lobe (MTL) and the caudate in learning visual categories either by verbalizeable rules or without awareness. The MTL and caudate are found to play dissociable roles in different types of category learning with successful(More)
Considerable evidence has argued in favor of multiple neural systems supporting human category learning, one based on conscious rule inference and one based on implicit information integration. However, there have been few attempts to study potential system interactions during category learning. The PINNACLE (Parallel Interactive Neural Networks Active in(More)
IT HAS BEEN PROPOSED THAT TWO RELATIVELY INDEPENDENT COGNITIVE CONTROL NETWORKS EXIST IN THE BRAIN: the cingulo-opercular network (CO) and the fronto-parietal network (FP). Past work has shown that chronic brain lesions affect these networks independently. It remains unclear, however, how these two networks are affected by acute brain disruptions. To(More)
Anatomical connectivity differences between the dorsal and ventral lateral prefrontal cortex (PFC) of the non-human primate strongly suggests that these regions support different functions. However, after years of study, it remains unclear whether these regions are functionally distinct. In contrast, there has been a groundswell of recent studies providing(More)
We investigated the effect of bromocriptine, a dopamine agonist, on individual differences in behavior as well as frontal-striatal connectivity during a working memory task. After dopaminergic augmentation, frontal-striatal connectivity in low working memory capacity individuals increases, corresponding with behavioral improvement whereas decreases in(More)
OBJECTIVE We tested the value of measuring modularity, a graph theory metric indexing the relative extent of integration and segregation of distributed functional brain networks, for predicting individual differences in response to cognitive training in patients with brain injury. METHODS Patients with acquired brain injury (n = 11) participated in 5(More)
Models of categorization enable us to test specific hypotheses about psychological processes. Neuroimaging provides us with the tools to visualize the neural correlates of these same processes in human subjects. By combining these techniques, we can begin to make the connection between behavior and neural activity. Here we collected fMRI data in a category(More)