Emeline M Hatchi

Learn More
Mitochondria are dynamic organelles with a morphology resulting from the balance between two opposing processes: fusion and fission. Little is known about the function of mitochondrial fusion, beside its role in the maintenance of mitochondrial DNA. We report here that enforced mitochondrial hyperfusion, due to the expression of a dominant-negative mutant(More)
The innate and adaptive immune responses involve the stimulation of nuclear factor κB (NF-κB) transcription factors through the Lys(63) (K(63))-linked ubiquitylation of specific components of NF-κB signaling pathways. We found that ubiquitylated components of the NF-κB pathway accumulated on the cytosolic leaflet of the endoplasmic reticulum (ER) membrane(More)
NF-κB is a master gene regulator involved in plethora of biological processes, including lymphocyte activation and proliferation. Reversible ubiquitinylation of key adaptors is required to convey the optimal activation of NF-κB. However the deubiquitinylases (DUBs), which catalyze the removal of these post-translational modifications and participate to(More)
BACKGROUND Beside their established function in shaping cell architecture, some cell polarity proteins were proposed to participate to lymphocyte migration, homing, scanning, as well as activation following antigen receptor stimulation. Although PALS1 is a central component of the cell polarity network, its expression and function in lymphocytes remains(More)
The nuclear factor κB (NF-κB) family members p65 and c-Rel chiefly orchestrate lymphocytes activation following T-cell receptor (TCR) engagement. In contrast to p65, which is rapidly mobilized, c-Rel activation occurs subsequently as it involves a nuclear factor of activated T-cells (NFAT)-dependent upregulation step. However, how TCR ligation drives p65(More)
  • 1