Emeline Combes-Meynet

Learn More
Mobilization of insoluble soil inorganic phosphate by plant beneficial rhizobacteria is a trait of key importance to the development of microbial biofertilizers. In this study, the ability of several Pseudomonas spp. to solubilize Ca3 (PO4 )2 was compared. While all Pseudomonas spp. were found to facilitate a decrease in pH and solubilize inorganic(More)
During evolution, plants have become associated with guilds of plant-growth-promoting rhizobacteria (PGPR), which raises the possibility that individual PGPR populations may have developed mechanisms to cointeract with one another on plant roots. We hypothesize that this has resulted in signaling phenomena between different types of PGPR colonizing the same(More)
Pseudomonads producing the antimicrobial metabolite 2,4-diacetylphloroglucinol (Phl) can control soil-borne phytopathogens, but their impact on other plant-beneficial bacteria remains poorly documented. Here, the effects of synthetic Phl and Phl(+) Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators were investigated. Most A. brasilense(More)
The plant-beneficial bacterium Pseudomonas fluorescens F113 harbours an acdS gene, which enables deamination of 1-aminocyclopropane-1-carboxylate. The impact of abiotic and biotic factors on the expression of this gene was assessed, as well as the plant-beneficial properties of F113 under different soil moistures. An acdS-egfp biosensor was constructed in(More)
  • 1