Emanuele Salvatore Scarpa

  • Citations Per Year
Learn More
Human NAD(P)H: quinone oxidoreductase 1 (NQO1) catalyzes the obligatory two-electron reduction of quinones. For this peculiar catalytic mechanism, the enzyme is considered an important cytoprotector. The NQO1 gene is expressed in all human tissues, unless a polymorphism due to C609T point mutation is present. This polymorphism produces a null phenotype in(More)
During the development, progression and dissemination of neoplastic lesions, cancer cells can hijack normal pathways and mechanisms. This includes the control of the function of cellular proteins through reversible post-translational modifications, such as ADP-ribosylation, phosphorylation, and acetylation. In the case of mono-ADP-ribosylation and(More)
Mono-ADP-ribosylation is a post-translational modification that was discovered more than five decades ago, and it consists of the enzymatic transfer of ADP-ribose from NAD⁺ to acceptor proteins. In viruses and prokaryotes, mono-ADP-ribosylation is mainly, but not exclusively, a mechanism used to take control of the host cell. In mammals,(More)
The post-translational modifications of proteins by mono- and poly-ADP-ribosylation involve the cleavage of βNAD⁺, with the release of its nicotinamide moiety, accompanied by the transfer of a single (mono) or several (poly) ADP-ribose molecules from βNAD⁺ to a specific amino-acid residue of various cellular proteins. Thus, both mono- and(More)
  • 1