Learn More
In this paper the benefits of implementation of the Tate pair-ing computation in dedicated hardware are discussed. The main observation lies in the fact that arithmetic architectures in the extension field GF (3 6m) are good candidates for parallelization, leading to a similar calculation time in hardware as for operations over the base field GF (3 m).(More)
This paper presents an energy-efficient medium access control protocol suitable for communication in a wireless body area network for remote monitoring of physiological signals such as EEG and ECG. The protocol takes advantage of the static nature of the body area network to implement the effective time-division multiple access (TDMA) strategy with very(More)
Body Area Networks (BAN) are a specific type of Network structure. They are spread over a very small area and their available power is heavily constrained. Hence it is useful to have gateway points in the network, such as nodes carried around the belt, that are less power constrained and can be used for network coordination. This network structure can(More)
There has been a lot of interest in recent years in the problems faced by cryptosystems due to side channel attacks. Algorithms for elliptic curve point scalar multiplication such as the double and add method are prone to such attacks. By making use of special addition chains, it is possible to implement a simple power analysis (SPA) resistant cryptosystem.(More)
—We designed, implemented, tested and measured an ultra low power Wake Up Receiver (WUR), intended for use in Wireless Body Area Networks (WBAN). Gaussian On-Off Keying (GOOK) and Pulse Width Modulation (PWM) are used to modulate and encode, respectively, the preamble signal. The receiver incorporates a decoder to enable Serial Peripheral Interface (SPI).(More)
This paper presents the design, implementation and characterization of an energy--efficient smart power unit for a wireless sensor network with a versatile nano-Watt wake up radio receiver. A novel Smart Power Unit has been developed featuring multi-source energy harvesting, multi-storage adaptive recharging, electrochemical fuel cell integration, radio(More)
Low Density Parity Check (LDPC) codes over GF(2<sup>m</sup>) are an extension of binary LDPC codes that have not been studied extensively. Performances of GF(2<sup>m</sup>) LDPC codes have been shown to be higher than binary LDPC codes, but the complexity of the encoders/decoders increases. Hence there iS a substantial lack of hardware implementations for(More)