Emanuel H. Rubensson

Learn More
We present a complete linear scaling method for hybrid Kohn-Sham density functional theory electronic structure calculations and demonstrate its performance. Particular attention is given to the linear scaling computation of the Kohn-Sham exchange-correlation matrix directly in sparse form within the generalized gradient approximation. The described method(More)
We present a library for parallel block-sparse matrix-matrix multiplication on distributed memory clusters. By using a quadtree matrix representation data locality is exploited without any prior information about the matrix sparsity pattern. A distributed quadtree matrix representation is straightforward to implement due to our recent development of the(More)
We present an implementation of a set of algorithms for performing Hartree-Fock calculations with resource requirements in terms of both time and memory directly proportional to the system size. In particular, a way of directly computing the Hartree-Fock exchange matrix in sparse form is described which gives only small addressing overhead. Linear scaling(More)
The performance of linear-scaling electronic structure calculations depends critically on matrix sparsity. This article gives an overview of different strategies for removal of small matrix elements, with emphasis on schemes that allow for rigorous control of errors. In particular, a novel scheme is proposed that has significantly smaller computational(More)
A recursive algorithm for the inverse factorization S(-1)=ZZ(*) of Hermitian positive definite matrices S is proposed. The inverse factorization is based on iterative refinement [A.M.N. Niklasson, Phys. Rev. B 70, 193102 (2004)] combined with a recursive decomposition of S. As the computational kernel is matrix-matrix multiplication, the algorithm can be(More)
We propose Chunks and Tasks, a parallel programming model built on abstractions for both data and work. The application programmer specifies how data and work can be split into smaller pieces, chunks and tasks, respectively. The Chunks and Tasks library maps the chunks and tasks to physical resources. In this way we seek to combine user friendliness with(More)
Efficient truncation criteria used in multiatom blocked sparse matrix operations for ab initio calculations are proposed. As system size increases, so does the need to stay on top of errors and still achieve high performance. A variant of a blocked sparse matrix algebra to achieve strict error control with good performance is proposed. The presented idea is(More)
Density matrix purification, although being a powerful tool for linear scaling construction of the density matrix in electronic structure calculations, has been limited by uncontrolled error accumulation. In this article, a strategy for the removal of small matrix elements in density matrix purification is proposed with which the forward error can be(More)
As it stands, density matrix purification is a powerful tool for linear scaling electronic structure calculations. The convergence is rapid and depends only weakly on the band gap. However, as will be shown in this letter, there is room for improvements. The key is to allow for nonmonotonicity in the recursive polynomial expansion. On the basis of this(More)