Learn More
Calcium pumps of the plasma membrane (also known as plasma membrane Ca(2+)-ATPases or PMCAs) are responsible for the expulsion of Ca(2+) from the cytosol of all eukaryotic cells. Together with Na(+)/Ca(2+) exchangers, they are the major plasma membrane transport system responsible for the long-term regulation of the resting intracellular Ca(2+)(More)
BACKGROUND Most eukaryotic genes are divided into introns and exons. Upon transcription, the intronic segments are eliminated and the exonic sequences spliced together through a series of complex processing events. Alternative splicing refers to the optional inclusion or exclusion of specific exons in transcripts derived from a single gene, which leads to(More)
Modulation of Ca(2+) channels by neurotransmitters provides critical control of neuronal excitability and synaptic strength. Little is known about regulation of the Ca(2+) efflux pathways that counterbalance Ca(2+) influx in neurons. We demonstrate that bradykinin and ATP significantly facilitate removal of action potential-induced Ca(2+) loads by(More)
Plasma membrane Ca2+ ATPases (PMCAs) are highly regulated transporters responsible for Ca2+ extrusion from all eukaryotic cells. Different PMCA isoforms are implicated in various tasks of Ca2+ regulation including bulk Ca2+ transport and localized Ca2+ signaling in specific membrane microdomains. Accumulating evidence shows that loss, mutation or(More)
The inhibition by the regulatory domain and the interaction with calmodulin (CaM) vary among plasma membrane calcium pump (PMCA) isoforms. To explore these differences, the kinetics of CaM effects on PMCA4a were investigated and compared with those of PMCA4b. The maximal apparent rate constant for CaM activation of PMCA4a was almost twice that for PMCA4b,(More)
cDNA clones coding for human plasma membrane Ca2+ pump isoforms have been isolated from a fetal skeletal muscle cDNA library. Compared with the sequence of a teratoma cDNA-encoded pump these clones specify isoforms that contain either 29- or 38-amino acid insertions within the calmodulin-binding region. Replacement of two basic arginine residues by an(More)
Plasma-membrane calcium pumps [PMCAs (plasma-membrane Ca(2+)-ATPases)] expel Ca(2+) from eukaryotic cells to maintain overall Ca(2+) homoeostasis and to provide local control of intracellular Ca(2+) signalling. Recent work indicates functional versatility among PMCA isoforms, with specific pumps being essential for cochlear hair cell function, sperm(More)
The complete nucleotide sequence and exon/intron structure of the rat embryonic skeletal muscle myosin heavy chain (MHC) gene has been determined. This gene comprises 24 X 10(3) bases of DNA and is split into 41 exons. The exons encode a 6035 nucleotide (nt) long mRNA consisting of 90 nt of 5' untranslated, 5820 nt of protein coding and 125 nt of 3'(More)
Spatial and temporal regulation of intracellular Ca(2+) signaling depends on localized Ca(2+) microdomains containing the requisite molecular components for Ca(2+) influx, efflux, and signal transmission. Plasma membrane Ca(2+)-ATPase (PMCA) isoforms of the "b" splice type contain predicted PDZ (PSD95/Dlg/ZO-1) interaction domains. The COOH-terminal tail of(More)
The plasma membrane calcium ATPases (PMCAs) are ubiquitously expressed proteins that couple the extrusion of calcium across the plasma membrane with the hydrolysis of ATP. In mammals, four separate genes encode distinct PMCA isoforms. Complex patterns of alternative RNA splicing generate additional isoform variability. Functionally, the PMCAs were(More)