Learn More
Avian bipedalism is best studied in derived walking/running specialists. Here, we use kinematics and center of mass (CoM) mechanical energy patterns to investigate gait transitions of lapwings-migratory birds that forage on the ground, and therefore may need a trade-off between the functional demands of terrestrial locomotion and long distance flights. The(More)
A crucial aspect of comparative biomechanical research is the center of mass (CoM) estimation in animal locomotion scenarios. Important applications include the parameter estimation of locomotion models, the discrimination of gaits, or the calculation of mechanical work during locomotion. Several methods exist to approximate the CoM position, e.g.(More)
Previous research has resulted in increasing insight into neuro-mechanical control strategies during perturbed locomotion. In contrast, more general analyses on simple model (template)-related parameters during avian terrestrial locomotion are still rare. Quail kinematic data obtained using X-ray videography combined with ground reaction force measurements(More)
Many birds use grounded running (running without aerial phases) in a wide range of speeds. Contrary to walking and running, numerical investigations of this gait based on the BSLIP (bipedal spring loaded inverted pendulum) template are rare. To obtain template related parameters of quails (e.g. leg stiffness) we used x-ray cinematography combined with(More)
Devonian stem tetrapods are thought to have used ‘crutching’ on land, a belly-dragging form of synchronous forelimb action-powered locomotion. During the Early Carboniferous, early tetrapods underwent rapid radiation, and the terrestrial locomotion of crown-group node tetrapods is believed to have been hindlimb-powered and ‘raised’, involving symmetrical(More)
Small birds move with pronograde trunk orientation and crouched legs. Although the pronograde trunk has been suggested to be beneficial for grounded running, the cause(s) of the specific leg kinematics are unknown. Here we show that three charadriiform bird species (northern lapwing, oystercatcher, and avocet; great examples of closely related species that(More)
Scientists have historically categorized gaits discretely (e.g. regular gaits such as walking, running). However, previous results suggest that animals such as birds might mix or regularly or stochastically switch between gaits while maintaining a steady locomotor speed. Here, we combined a novel and completely automated large-scale study (over one million(More)
In contrast to the upright trunk in humans, trunk orientation in most birds is almost horizontal (pronograde). It is conceivable that the orientation of the heavy trunk strongly influences the dynamics of bipedal terrestrial locomotion. Here, we analyse for the first time the effects of a pronograde trunk orientation on leg function and stability during(More)
Head-bobbing in birds is a conspicuous behaviour related to vision comprising a hold phase and a thrust phase. The timing of these phases has been shown in many birds, including quail, to be coordinated with footfall during locomotion. We were interested in the biomechanics behind this phenomenon. During terrestrial locomotion in birds, the trunk is(More)