Elvira Albert

Learn More
The classical approach to automatic cost analysis consists of two phases. Given a program and some measure of cost, the analysis first produces cost relations (CRs), i.e., recursive equations which capture the cost of the program in terms of the size of its input data. Second, CRs are converted into closed-form, i.e., without recurrences. Whereas the first(More)
Introduction: The state of the art in termination analysis includes advanced techniques developed for logic and functional programming [12, 4, 9, 11, 10] and imperative languages [2, 5, 8, 6, 10], as well as for term rewriting systems [10]. In [6, 5] tools for proving termination of large industrial code are presented. However, termination of low-level(More)
The classical approach to automatic cost analysis consists of two phases. Given a program and some measure of cost, we first produce recurrence relations (RRs) which capture the cost of our program in terms of the size of its input data. Second, we convert such RRs into closed form (i.e., without recurrences). Whereas the first phase has received(More)
Cost analysis statically approximates the cost of programs in terms of their input<lb>data size. This paper presents, to the best of our knowledge, the first approach to<lb>the automatic cost analysis of Object-Oriented bytecode programs. In languages<lb>such as Java and C#, analyzing bytecode has a much wider application area<lb>than analyzing source code(More)
Cost analysis of Java bytecode is complicated by its unstructured control flow, the use of an operand stack and its object-oriented programming features (like dynamic dispatching). This paper addresses these problems and develops a generic framework for the automatic cost analysis of sequential Java bytecode. Our method generates cost relations which define(More)
Declarative multi-paradigm languages combine the most important features of functional, logic and concurrent programming. The computational model of such integrated languages is usually based on a combination of two different operational principles: narrowing and residuation. This work is motivated by the fact that a precise definition of an operational(More)
Partial evaluation is a semantics-based program optimization technique which has been investigated within different programming paradigms and applied to a wide variety of languages. Recently, a partial evaluation framework for functional logic programs has been proposed. In this framework, narrowing—the standard operational semantics of integrated(More)
This paper describes the architecture of costa, an abstract interpretation based cost and termination analyzer for Java bytecode. The system receives as input a bytecode program, (a choice of) a resource of interest and tries to obtain an upper bound of the resource consumption of the program. costa provides several non-trivial notions of cost, as the(More)
State of the art analyzers in the Logic Programming (LP) paradigm are nowadays mature and sophisticated. They allow inferring a wide variety of global properties including termination, bounds on resource consumption, etc. The aim of this work is to automatically transfer the power of such analysis tools for LP to the analysis and verification of Java(More)