Elva J. H. Robinson

Learn More
Many individual decisions are informed by direct comparison of the alternatives. In collective decisions, however, only certain group members may have the opportunity to compare options. Emigrating ant colonies (Temnothorax albipennis) show sophisticated nest-site choice, selecting superior sites even when they are nine times further away than the(More)
An important problem facing organisms in a heterogeneous environment is how to redistribute resources to where they are required. This is particularly complex in social insect societies as resources have to be moved both from the environment into the nest and between individuals within the nest. Polydomous ant colonies are split between multiple spatially(More)
Pharaoh's ants organise their foraging system using three types of trail pheromone. All previous foraging models based on specific ant foraging systems have assumed that only a single attractive pheromone is used. Here we present an agent-based model based on trail choice at a trail bifurcation within the foraging trail network of a Pharaoh's ant colony(More)
Colony size can be considered the analogue of the body size of a superorganism. Just as body size is important to the physiology of an individual animal, colony size correlates with the life-history and ecology of social insects. Although nest excavation and counting all individuals is the most accurate method for estimating colony size (or nest size), it(More)
Efficient and robust transportation networks are key to the effectiveness of many natural systems. In polydomous ant colonies, which consist of two or more spatially separated but socially connected nests, resources must be transported between nests. In this study, we analyse the network structure of the inter-nest trails formed by natural polydomous ant(More)
Resource sharing is an important cooperative behavior in many animals. Sharing resources is particularly important in social insect societies, as division of labor often results in most individuals including, importantly, the reproductives, relying on other members of the colony to provide resources. Sharing resources between individuals is therefore(More)
Eusociality is one of the most complex forms of social organization, characterized by cooperative and reproductive units termed colonies. Altruistic behavior of workers within colonies is explained by inclusive fitness, with indirect fitness benefits accrued by helping kin. Members of a social insect colony are expected to be more closely related to one(More)
Flexibility in task performance is essential for a robust system of division of labour. We investigated what factors determine which social insect workers respond to colony-level changes in task demand. We used radio-frequency identification technology to compare the roles of corpulence, age, spatial location and previous activity (intra-nest/extra-nest) in(More)
Forager ants lay attractive trail pheromones to guide nestmates to food, but the effectiveness of foraging networks might be improved if pheromones could also be used to repel foragers from unrewarding routes. Here we present empirical evidence for such a negative trail pheromone, deployed by Pharaoh's ants (Monomorium pharaonis) as a 'no entry' signal to(More)
Decision-making animals can use slow-but-accurate strategies, such as making multiple comparisons, or opt for simpler, faster strategies to find a 'good enough' option. Social animals make collective decisions about many group behaviours including foraging and migration. The key to the collective choice lies with individual behaviour. We present a case(More)