Elodie Salager

Learn More
A protocol for the structure determination of powdered solids at natural abundance by NMR is presented and illustrated for the case of the small drug molecule thymol. The procedure uses proton spin-diffusion data from two-dimensional NMR experiments in combination with periodic DFT refinements incorporating (1)H and (13)C NMR chemical shifts. For thymol,(More)
A protocol for the ab initio crystal structure determination of powdered solids at natural isotopic abundance by combining solid-state NMR spectroscopy, crystal structure prediction, and DFT chemical shift calculations was evaluated to determine the crystal structures of four small drug molecules: cocaine, flutamide, flufenamic acid, and theophylline. For(More)
This article addresses, by means of computation and advanced experiments, one of the key challenges of NMR crystallography, namely the assignment of individual resonances to specific sites in a crystal structure. Moreover, it shows how NMR can be used for crystal structure validation. The case examined is form B of terbutaline sulfate. CPMAS (13)C and fast(More)
A fast method for crystal structure determination using crystal structure prediction and solid-state (1)H NMR is presented. This technique does not need any prior knowledge except the chemical formula; resonance assignment is not necessary. Starting from an ensemble of predicted crystal structures for powdered thymol, comparison between experimental and(More)
The many-body nature of the ubiquitous spin diffusion phenomenon makes it difficult to predict accurately from first principles. We show how the use of reduced Liouville spaces makes it possible to reproduce experimental proton spin diffusion measurements directly from crystalline geometry for powdered solids under magic-angle spinning.
Batteries for electrical storage are central to any future alternative energy paradigm. The ability to probe the redox mechanisms occurring at electrodes during their operation is essential to improve battery performances. Here we present the first report on Electron Paramagnetic Resonance operando spectroscopy and in situ imaging of a Li-ion battery using(More)
Nano-structured silicon anodes are attractive alternatives to graphitic carbons in rechargeable Li-ion batteries, owing to their extremely high capacities. Despite their advantages, numerous issues remain to be addressed, the most basic being to understand the complex kinetics and thermodynamics that control the reactions and structural rearrangements.(More)
Structural signatures: The analysis of Si-Si and Si-Li connectivities by solid-state NMR spectroscopy allows the different types of silicon clusters to be discriminated in the model lithium silicide compound Li(12)Si(7) (see picture, Si clusters red and blue, Li ions gray). The results provide new NMR spectroscopic strategies with which to differentiate and(More)
In section A, we describe the product-operator basis set used to expand the density matrix, the rules for the evolution under the dipolar Hamiltonian, and the numerical integration scheme used to propagate the density matrix. In section B, we describe the experimental and simulated content of the matrices of proton spin diffusion (PSD) build-up curves.(More)