Elmira A Anderzhanova

Learn More
We found that in mice the basal activity of monoamine oxidase B (MAO-B) in the medial prefrontal cortex (mPFC) is lower in BALB/C than in C57Bl/6J mice, whereas activity of MAO-A is similar between strains. BALB/C mice, in comparison to C57Bl/6N mice, have higher basal content of dopamine in the mPFC, in both microdialysates and tissue content. Novelty(More)
We used microdialysis to study how acute toxic doses of d-amphetamine and sydnocarb [3-(beta-phenylisopropyl)-N-phenylcarbamoylsydnonimine], an original Russian psychostimulant, affect extracellular levels of glutamate, aspartate, and taurine in the neostriatum of halothane-anesthetized male Sprague-Dawley rats. The administration of d-amphetamine (5.0(More)
Microdialysis is one of the most powerful neurochemistry techniques, which allows the monitoring of changes in the extracellular content of endogenous and exogenous substances in the brain of living animals. The strength as well as wide applicability of this experimental approach are based on the bulk theory of brain neurotransmission. This methodological(More)
We established mouse models of extremes in trait anxiety, which are based on selective breeding for low vs. normal vs. high open-arm exploration on the elevated plus-maze. Genetically selected low anxiety-related behavior (LAB) coincided with hyperactivity in the home cage. Given the fact that several psychiatric disorders such as schizophrenia, mania, and(More)
Microdialysis technique was used to compare the effects of four repeated intraperitoneal administrations of two psychostimulant drugs, D-amphetamine and sydnocarb, at the equimolar doses 5 and 23.8 mg/kg, respectively, on the extracellular level of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and hydroxyl radicals (.OH) in the dorsal striatum of(More)
Acute ammonia neurotoxicity caused by intraperitoneal administration of ammonium salts is mediated by overactivation of N-methyl-D-aspartate (NMDA) receptors, with ensuing generation of free radicals and extracellular accumulation of cyclic GMP (cGMP) arising from stimulation of nitric oxide (NO) synthesis. In this study, infusion of ammonium chloride or(More)
The neurotoxic effects of psychostimulants are mediated by several mechanisms, which together lead to neuronal damage. These mechanisms include an increase in the extracellular content of dopamine, stimulation of dopamine oxidation, accumulation of extracellular glutamate, and an increase in body temperature. In the present study, the dopamine receptor(More)
Microdialysis is a powerful method for in vivo neurochemical analyses. It allows fluid sampling in a dynamic manner in specific brain regions over an extended period of time. A particular focus has been the neurochemical analysis of extracellular fluids to explore central nervous system functions. Brain microdialysis recovers neurotransmitters,(More)
The neurotoxic effects of psychostimulants at high dosages limit their clinical applicability but the mechanism of neurotoxicity is still unsettled. We now studied by microdialysis how acute and subchronic (four times at 2-h intervals) administrations of D-amphetamine and sydnocarb [3-(beta-phenylisopropyl)-N-phenylcarbamoylsydnonimine], an original novel(More)
Although mental disorders as major depression are highly prevalent worldwide their underlying causes remain elusive. Despite the high heritability of depression and a clear genetic contribution to the disease, the identification of genetic risk factors for depression has been very difficult. The first published candidate to reach genome-wide significance in(More)