Elmars Grens

Learn More
Because it exhibits a remarkable capability to accept mutational intervention and undergo correct folding and self-assembly in all viable prokaryotic and eukaryotic expression systems, hepatitis B core (HBc) protein has been favored over other proposed particulate carriers. Structurally, the unusual alpha-helical organization of HBc dimeric units allows(More)
Hepatitis B virus (HBV) continues to be one of the most important viral pathogens in humans. This review provides an update on the molecular epidemiology and immunology of HBV infection. DNA sequencing has allowed replacement of the initial serotypic classification of HBV strains by a more systematic genotype system that currently consists of 7 members(More)
Virus-like particle (VLP) technology is a promising approach for the construction of novel vaccines, diagnostic tools, and gene therapy vectors. Initially, VLPs were primarily derived from non-enveloped icosahedral or helical viruses and proved to be viable vaccine candidates due to their effective presentation of epitopes in a native conformation. VLP(More)
A set of monoclonal antibodies (mAbs) directed against the preS2 region of hepatitis B virus (HBV) surface antigen (HBsAg) was generated by immunization of mice with native HBsAg isolated from the blood of HBV carriers. According to (1) mutual competition binding of mAb to natural HBsAg, (2) recognition of full-length preS2 displayed on hepatitis B core(More)
HBV core (HBc) particle is one of the most intensively studied particulate carriers for the insertion of foreign peptide sequences. Recombinant HBc protein expressed from the cloned gene undergoes the correct folding in a large variety of bacterial, yeast, insect and mammalian cells. Unique assembly properties and shape of 30/34-nm HBc particles allow(More)
Spatial and immunochemical elucidation of hepatitis B core antigen suggested unique organization of its major immunodominant region (MIR) localized within the central part of molecule around amino acid residues 74-83. This superficial loop was recognized as the most prospective target for the insertion of foreign epitopes ensuring maximal antigenicity and(More)
A structure-function analysis of the icosahedral RNA bacteriophage fr coat protein (CP) assembly was undertaken using linker-insertion, deletion and substitution mutagenesis. Mutations were specifically introduced into either pre-existing or artificially created restriction enzyme sites within fr CP gene expressed in Escherichia coli from a recombinant(More)
This review article is a continuation of the paper “Hepatitis B core particles as a universal display model: a structure-function basis for development” written by Pumpens P. and Grens E., ordered by Professor Lev Kisselev and published in FEBS Letters, 1999, 442, 1–6. The past 17 years have strengthened the paper’s finding that the human hepatitis B virus(More)
RNA phages are often used as prototypes for modern recombinant virus-like particle (VLP) technologies. Icosahedral RNA phage VLPs can be formed from coat proteins (CPs) and are efficiently produced in bacteria and yeast. Both genetic fusion and chemical coupling have been successfully used for the production of numerous chimeras based on RNA phage VLPs. In(More)