Learn More
UNLABELLED Carotenoids are C-40 tetraterpenoid compounds with potential health beneficial effects. Major dietary sources include a variety of fruits and vegetables. Rapid screening methods are therefore desired, but their accuracy varies depending on the carotenoid profile and the matrix of the plant food. In the present study, 3 different methods were(More)
Receptor-mediated Ca2+ release from inositol (1,4,5)-trisphosphate (IP3)-sensitive Ca2+ stores causes "capacitative calcium entry" in many cell types (Putney, J. W., Jr. (1986) Cell Calcium 7, 1-12; Putney, J. W., Jr. (1990) Cell Calcium 11, 611-624). We used patch-clamp and fluorescence techniques in isolated mouse pancreatic acinar cells to identify ion(More)
Mammalian homologues of the Drosophila trp/trpl-gene-family code for "Ca(2+)-store-operated" channels. Here we describe the cloning and expression of a trp/trpl homologous gene from rat brain. The clone is named Rtrp3 because of its high homology to the recently described Htrp3 (Zhu et al (1996) Cell 85:661-671). Expression of Rtrp3 in the mammalian COS-1(More)
Formation of an immunological synapse (IS) between APC and T cells activates calcium entry through ORAI channels, which is indispensable for T cell activation. Successful proliferation and maturation of naive T cells is possible only if premature inactivation of ORAI channels is prevented. Although it is undisputed that calcium entry through ORAI channels(More)
Release of Ca2+ from intracellular stores can occur by different intracellular messengers such as InsP3, cADPR and NAADP. Although in some cells messengers may operate on different stores, there are also Ca2+ stores with sensitivities for all three of these messengers. It is well documented, that InsP3- and cADPR-sensitive Ca2+ stores are involved in the(More)
Red blood cells (RBCs) are among the most intensively studied cells in natural history, elucidating numerous principles and ground-breaking knowledge in cell biology. Morphologically, RBCs are largely homogeneous, and most of the functional studies have been performed on large populations of cells, masking putative cellular variations. We studied human and(More)
Pannexins (Panx) are proteins with a similar membrane topology to connexins, the integral membrane protein of gap junctions. Panx1 channels are generally of major importance in a large number of system and cellular processes and their function has been thoroughly characterized. In contrast, little is known about channel structure and subcellular(More)
Release of Ca(2+) from inositol (1,4,5)-trisphosphate-sensitive Ca(2+) stores causes "capacitative calcium entry," which is mediated by the so-called "Ca(2+) release-activated Ca(2+) current" (I(CRAC)) in RBL-1 cells. Refilling of the Ca(2+) stores or high cytoplasmic [Ca(2+)] ([Ca(2+)](cyt)) inactivate I(CRAC). Here we address the question if also(More)
Cytotoxic T lymphocytes (CTLs) form an integral part of the adaptive immune system. Their main function is to eliminate bacteria- and virus-infected target cells by releasing perforin and granzymes (the lethal hit) contained within lytic granules (LGs), at the CTL-target-cell interface [the immunological synapse (IS)]. The formation of the IS as well as the(More)
Cytotoxic T lymphocytes patrol our body in search for infected cells which they kill through the release of cytotoxic substances contained in cytotoxic granules. The fusion of cytotoxic granules occurs at a specially formed contact site, the immunological synapse, and is tightly controlled to ensure specificity. In this review, we discuss the contribution(More)