Elmé Breedt

  • Citations Per Year
Learn More
Emission from Active Galactic Nuclei is known to vary strongly over time over a wide energy band, but the origin of the variability and especially of the inter-band correlations is still not well established. Here we present the results of our X-ray and optical monitoring campaign of the quasar MR 2251-178, covering a period of 2.5 years. The X-ray 2–10 keV(More)
We present the discovery of strongly variable emission lines from a gaseous disc around the DA white dwarf SDSS J1617+1620, a star previously found to have an infrared excess indicative of a dusty debris disc formed by the tidal disruption of a rocky planetary body. Time series spectroscopy obtained during the period 2006–2014 has shown the appearance of(More)
We present simultaneous X-ray and optical B and V band light curves of the Seyfert Galaxy NGC 3783 spanning 2 years. The flux in all bands is highly variable and the fluctuations are significantly correlated. As shown before by Stirpe et al. the optical bands vary simultaneously, with a delay of less than 1.5 days but both B and V bands lag the X-ray(More)
White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and(More)
We report the discovery and characterization of a deeply eclipsingAMCVn-system,Gaia14aae (=ASSASN-14cn). Gaia14aae was identified independently by the All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al.) and by the Gaia Science Alerts project, during two separate outbursts. A third outburst is seen in archival Pan-STARRS-1 (PS1; Schlafly et(More)
We present high-precision, model-independent, mass and radius measurements for 16 white dwarfs in detached eclipsing binaries and combine these with previously published data to test the theoretical white dwarf mass–radius relationship.We reach amean precision of 2.4 per cent in mass and 2.7 per cent in radius, with our best measurements reaching a(More)
We present phase-resolved spectroscopy of two new short-period low accretion rate magnetic binaries, SDSS J125044.42+154957.3 (Porb = 86 min) and SDSS J151415.65+074446.5 (Porb = 89 min). Both systems were previously identified as magnetic white dwarfs from the Zeeman splitting of the Balmer absorption lines in their optical spectra. Their spectral energy(More)
We present results from a spectroscopic survey designed to uncover AM Canum Venaticorum (AM CVn) binaries hidden in the photometric database of the Sloan Digital Sky Survey (SDSS). The discovery of only 7 new AM CVns in the observed part of our sample suggests a lower space density than previously predicted. Based on the complete g ≤ 19 sample, we calculate(More)
We present results from the final 6 months of a survey to search for pulsations in white dwarfs (WDs) and hot subdwarf stars with the Kepler spacecraft. Spectroscopic observations are used to separate the objects into accurate classes, and we explore the physical parameters of the subdwarf B (sdB) stars and white dwarfs in the sample. From the Kepler(More)
Low-mass white-dwarf stars are the remnants of disrupted red-giant stars in binary millisecond pulsars and other exotic binary star systems. Some low-mass white dwarfs cool rapidly, whereas others stay bright for millions of years because of stable fusion in thick surface hydrogen layers. This dichotomy is not well understood, so the potential use of(More)