Learn More
All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct(More)
All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of(More)
Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast(More)
BACKGROUND Somatic mutations in the Janus kinase 2 gene (JAK2) occur in many myeloproliferative neoplasms, but the molecular pathogenesis of myeloproliferative neoplasms with nonmutated JAK2 is obscure, and the diagnosis of these neoplasms remains a challenge. METHODS We performed exome sequencing of samples obtained from 151 patients with(More)
All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we(More)
To identify risk variants for colorectal cancer (CRC), we conducted a genome-wide association study, genotyping 550,163 tag SNPs in 940 individuals with familial colorectal tumor (627 CRC, 313 advanced adenomas) and 965 controls. We evaluated selected SNPs in three replication sample sets (7,473 cases, 5,984 controls) and identified three SNPs in SMAD7(More)
Cancers emerge from an ongoing Darwinian evolutionary process, often leading to multiple competing subclones within a single primary tumour. This evolutionary process culminates in the formation of metastases, which is the cause of 90% of cancer-related deaths. However, despite its clinical importance, little is known about the principles governing the(More)
Recent sequencing studies have extensively explored the somatic alterations present in the nuclear genomes of cancers. Although mitochondria control energy metabolism and apoptosis, the origins and impact of cancer-associated mutations in mtDNA are unclear. In this study, we analyzed somatic alterations in mtDNA from 1675 tumors. We identified 1907 somatic(More)
We mapped a high-penetrance gene (CRAC1; also known as HMPS) associated with colorectal cancer (CRC) in the Ashkenazi population to a 0.6-Mb region on chromosome 15 containing SCG5 (also known as SGNE1), GREM1 and FMN1. We hypothesized that the CRAC1 locus harbored low-penetrance variants that increased CRC risk in the general population. In a large series(More)
To identify risk variants for childhood acute lymphoblastic leukemia (ALL), we conducted a genome-wide association study of two case-control series, analyzing the genotypes with respect to 291,423 tagging SNPs in a total of 907 ALL cases and 2,398 controls. We identified risk loci for ALL at 7p12.2 (IKZF1, rs4132601, odds ratio (OR) = 1.69, P = 1.20 x(More)