Ellen Popodi

Learn More
Knowledge of the rate and nature of spontaneous mutation is fundamental to understanding evolutionary and molecular processes. In this report, we analyze spontaneous mutations accumulated over thousands of generations by wild-type Escherichia coli and a derivative defective in mismatch repair (MMR), the primary pathway for correcting replication errors. The(More)
Sea urchins are widely used to study both fertilization and development. In this study we combine the two fields to examine the evolution of reproductive isolation in the genus Heliocidaris. Heliocidaris tuberculata develops indirectly via a feeding larva, whereas the only other species in the genus, H. erythrogramma, has evolved direct development through(More)
We describe the Hox cluster in the radially symmetric sea urchin and compare our findings to what is known from clusters in bilaterally symmetric animals. Several Hox genes from the direct-developing sea urchin Heliocidaris erythrogramma are described. CHEF gel analysis shows that the Hox genes are clustered on a < or = 300 kilobase (kb) fragment of DNA,(More)
We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using ΦC31 integrase,(More)
By sequencing the genomes of 34 mutation accumulation lines of a mismatch-repair defective strain of Escherichia coli that had undergone a total of 12,750 generations, we identified 1625 spontaneous base-pair substitutions spread across the E. coli genome. These mutations are not distributed at random but, instead, fall into a wave-like spatial pattern that(More)
The relationship between the primary structure of the beta-tubulin C-terminal tail (CTT) and axoneme structure and function is explored using the spermatogenesis-specific beta2-tubulin of Drosophila. We previously showed that all beta-tubulins used for motile 9 + 2 axonemes contain a conserved sequence motif in the proximal part of the CTT, the beta-tubulin(More)
To investigate the bases for evolutionary changes in developmental mode, we fertilized eggs of a direct-developing sea urchin, Heliocidaris erythrogramma, with sperm from a closely related species, H. tuberculata, that undergoes indirect development via a feeding larva. The resulting hybrids completed development to form juvenile adult sea urchins. Hybrids(More)
Four genes expressed during the period of vitelline membrane formation are clustered within 8 kb of DNA in region 26A of the second chromosome. Temporal and quantitative difference in the profiles of accumulated RNA suggest that the genes are independently regulated although they are selectively expressed during the stages of vitelline membrane(More)
The adult sea urchin central nervous system (CNS) is composed of five radial nerve cords connected to a circular nerve ring. Although much is known about the molecular mechanisms underlying the development and function of the nervous systems of many invertebrate and vertebrate species, virtually nothing is known about these processes in echinoderms. We have(More)
Convergence is a significant evolutionary phenomenon. Arrival at similar morphologies from different starting points indicates a strong role for natural selection in shaping morphological phenotypes. There is no evidence yet of convergence in the developmental mechanisms that underlie the evolution of convergent developmental phenotypes. Here we report the(More)