Learn More
Escherichia coli ribonucleotide reductase (RNR), an alpha2beta2 complex, catalyzes the conversion of nucleoside 5'-diphosphate substrates (S) to 2'-deoxynucleoside 5'-diphosphates. alpha2 houses the active site for nucleotide reduction and the binding sites for allosteric effectors (E). beta2 contains the essential diferric tyrosyl radical (Y(122)(*))(More)
Peptides are an important class of endogenous ligands that regulate key biological cascades. As such, peptides represent a promising therapeutic class with the potential to alleviate many severe disease states. Despite their therapeutic potential, peptides frequently pose drug delivery challenges to scientists. This review introduces the physicochemical,(More)
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract Tyrosyl radicals (Y • s) are prevalent in biological catalysis and(More)
E. coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides, a process that requires long-range radical transfer over 35 A from a tyrosyl radical (Y(122)*) within the beta2 subunit to a cysteine residue (C(439)) within the alpha2 subunit. The radical transfer step is proposed to occur by proton-coupled electron(More)
Escherichia coli class Ia ribonucleotide reductase is composed of two subunits (α and β), which form an α2β2 complex that catalyzes the conversion of nucleoside 5'-diphosphates to deoxynucleotides (dNDPs). β2 contains the essential tyrosyl radical (Y122(•)) that generates a thiyl radical (C439(•)) in α2 where dNDPs are made. This oxidation occurs over 35 Å(More)
Considerable effort has been dedicated to the development of technology for the site-specific incorporation of unnatural amino acids into proteins, with nonsense codon suppression and expressed protein ligation emerging as two of the most promising methods. Recent research advances in which these methods have been applied to study protein function and(More)
  • 1