Learn More
Escherichia coli ribonucleotide reductase (RNR), an alpha2beta2 complex, catalyzes the conversion of nucleoside 5'-diphosphate substrates (S) to 2'-deoxynucleoside 5'-diphosphates. alpha2 houses the active site for nucleotide reduction and the binding sites for allosteric effectors (E). beta2 contains the essential diferric tyrosyl radical (Y(122)(*))(More)
Peptides are an important class of endogenous ligands that regulate key biological cascades. As such, peptides represent a promising therapeutic class with the potential to alleviate many severe disease states. Despite their therapeutic potential, peptides frequently pose drug delivery challenges to scientists. This review introduces the physicochemical,(More)
Tyrosyl radicals (Y·s) are prevalent in biological catalysis and are formed under physiological conditions by the coupled loss of both a proton and an electron. Fluorotyrosines (F(n)Ys, n = 1-4) are promising tools for studying the mechanism of Y· formation and reactivity, as their pK(a) values and peak potentials span four units and 300 mV, respectively,(More)
Ribonucleotide reductase (RNR) catalyzes conversion of nucleoside diphosphates (NDPs) to 2'-deoxynucleotides, a critical step in DNA replication and repair in all organisms. Class-Ia RNRs, found in aerobic bacteria and all eukaryotes, are a complex of two subunits: α2 and β2. The β2 subunit contains an essential diferric-tyrosyl radical (Y122O(•)) cofactor(More)
E. coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides, a process that requires long-range radical transfer over 35 A from a tyrosyl radical (Y(122)*) within the beta2 subunit to a cysteine residue (C(439)) within the alpha2 subunit. The radical transfer step is proposed to occur by proton-coupled electron(More)
Escherichia coli ribonucleotide reductase is an α2β2 complex and catalyzes the conversion of nucleoside 5'-diphosphates (NDPs) to 2'-deoxynucleotides (dNDPs). The reaction is initiated by the transient oxidation of an active-site cysteine (C(439)) in α2 by a stable diferric tyrosyl radical (Y(122)•) cofactor in β2. This oxidation occurs by a mechanism of(More)
Escherichia coli class Ia ribonucleotide reductase is composed of two subunits (α and β), which form an α2β2 complex that catalyzes the conversion of nucleoside 5'-diphosphates to deoxynucleotides (dNDPs). β2 contains the essential tyrosyl radical (Y122(•)) that generates a thiyl radical (C439(•)) in α2 where dNDPs are made. This oxidation occurs over 35 Å(More)
Ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleoside diphosphates (dNDPs). The Escherichia coli class Ia RNR uses a mechanism of radical propagation by which a cysteine in the active site of the RNR large (α2) subunit is transiently oxidized by a stable tyrosyl radical (Y•) in the RNR small (β2) subunit over(More)
Considerable effort has been dedicated to the development of technology for the site-specific incorporation of unnatural amino acids into proteins, with nonsense codon suppression and expressed protein ligation emerging as two of the most promising methods. Recent research advances in which these methods have been applied to study protein function and(More)
  • 1