Ellen A. Panisko

Learn More
A method has been developed that utilizes phosphoprotein isotope-coded affinity tags (PhIAT) that combines stable isotope and biotin labeling to enrich and quantitatively measure differences in the O-phosphorylation states of proteins. The PhIAT labeling approach involves hydroxide ion-mediated beta-elimination of the O-phosphate moiety and the addition of(More)
We used computational and mass spectrometric approaches to characterize the Aspergillus niger secretome.The 11,200 gene models predicted in the genome of A. niger strain ATCC 1015 were the data source for the analysis. Depending on the computational methods used, 691 to 881 proteins were predicted to be secreted proteins. We cultured A. niger in six(More)
Comparing a protein's concentrations across two or more treatments is the focus of many proteomics studies. A frequent source of measurements for these comparisons is a mass spectrometry (MS) analysis of a protein's peptide ions separated by liquid chromatography (LC) following its enzymatic digestion. Alas, LC-MS identification and quantification of(More)
Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and(More)
Fungal lignin-degrading systems likely include membrane-associated proteins that participate in diverse processes such as uptake and oxidation of lignin fragments, production of ligninolytic secondary metabolites, and defense of the mycelium against ligninolytic oxidants. Little is known about the nature or regulation of these membrane-associated(More)
AIMS Having and executing a well-defined and validated sampling protocol is critical following a purposeful release of a biological agent for response and recovery activities, for clinical and epidemiological analysis and for forensic purposes. The objective of this study was to address the need for validated sampling and analysis methods called out by the(More)
Two-dimensional gas chromatography coupled with time-of-flight mass spectrometry is a powerful tool for identifying and quantifying chemical components in complex mixtures. It is often used to analyze gasoline, jet fuel, diesel, bio-diesel and the organic fraction of bio-crude/bio-oil. In most of those analyses, the first dimension of separation is(More)
Global analysis of biological systems is becoming increasingly feasible as technologies that facilitate genome-wide analyses of gene expression are developed. Proteomics is the global analysis of expressed proteins (including posttranslational modifications) and seeks to establish the relationship between genome sequence, expressed proteins, protein-protein(More)
High-throughput liquid chromatography mass spectrometry (LC-MS)-based proteomic analysis has emerged as a powerful tool for functional annotation of genome sequences. These analyses complement the bioinformatic and experimental tools used for deriving, verifying, and functionally annotating models of genes and their transcripts. Furthermore, proteomics(More)
The use of a phosphoprotein isotope-coded affinity tag (PhIAT), which employs differential isotopic labeling and biotinylation, has been shown capable of enriching and identifying mixtures of low-abundance phosphopeptides. A denatured solution of beta-casein was labeled using the PhIAT method, and after proteolytic digestion, the labeled peptides were(More)