Learn More
Demyelination is the cause of disability in various neurological disorders. It is therefore crucial to understand the molecular regulation of oligodendrocytes, the myelin forming cells in the CNS. Growth factors are known to be essential for the development and maintenance of oligodendrocytes and are involved in the regulation of glial responses in various(More)
Recent evidence suggests that astrocytes play an important role in regulating de- and remyelination in multiple sclerosis. The role of astrocytes is controversial, and both beneficial as well as detrimental effects are being discussed. We performed loss-of-function studies based on astrocyte depletion in a cuprizone-induced rodent model of demyelination.(More)
Demyelinating optic neuritis (ON) is the most common cause of optic neuropathy typically presenting with a subacute painful visual loss. In 20% of patients with multiple sclerosis (MS), ON is the presenting symptom and half of the patients with isolated ON develop MS within 15 years. The diagnosis of ON plays an important role in neurological practice. A(More)
Microglia play a key role in the initiation and perpetuation of de- and remyelination because of their ability to present antigens and clear cell debris by phagocytosis. Different factors expressed or secreted by microglia seem to play an important role in regenerative processes. But it remains unclear which factors lead to a protective microglial phenotype(More)
Glatiramer acetate (GA) is an approved immunomodulating agent for the treatment of relapsing-remitting multiple sclerosis. Its mode of action is attributed to a T helper cell-type 1 (Th1) to Th2 cytokine shift in T cells. Th2-type GA-reactive T cells migrate into the brain and act suppressive at the sites of inflammation. However, there is increasing(More)
Apart from their involvement in the pathogenesis of demyelinating diseases such as multiple sclerosis, there is emerging evidence that matrix metalloproteinases (MMPs) also promote remyelination. We investigated region-specific expression patterns of 11 MMPs and 4 tissueinhibitors of metalloproteinases (TIMPs) in the cuprizone murine demyelination model.(More)
Neuroprotective approaches for central nervous system regeneration have not been successful in clinical practice so far and compounds that enhance remyelination are still not available for patients with multiple sclerosis. The objective of this study was to determine potential regenerative effects of the substance cytidine-5'-diphospho (CDP)-choline in two(More)
BACKGROUND Pathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and(More)
Interferon-beta (IFN-β) is an established therapy for relapsing-remitting multiple sclerosis (MS). However, the mode of action and the effect on oligodendrocytes are not yet clear. In this study, we examined the influence of an IFN-β therapy on the proliferation and differentiation of primary oligodendrocyte precursor cells (OPC) in mixed glial cultures.(More)
Systemic infection can influence the course in many diseases of the central nervous system (CNS) such as multiple sclerosis (MS), yet the relationship between infection outside the CNS and potential damage and/or protection within the CNS is still not understood. Activation of microglia is a characteristic feature of most CNS autoimmune disorders, including(More)