Elke De Mulder

Learn More
Implementations of cryptographic primitives are vulnerable to physical attacks. While the adversary only needs to succeed in one out of many attack methods, the designers have to consider all the known attacks, whenever applicable to their system, simultaneously. Thus, keeping an organized, complete and up-to-date table of physical attacks and(More)
We propose a parallel processing crypto-processor for elliptic curve cryptography (ECC) to speed up EC point multiplication. The processor consists of a controller that dynamically checks instruction-level parallelism (ILP) and multiple sets of modular arithmetic logic units accelerating modular operations. A case study of HW design with the proposed(More)
KeeLoq is a lightweight block cipher with a 32-bit block size and a 64-bit key. Despite its short key size, it is used in remote keyless entry systems and other wireless authentication applications. For example, there are indications that authentication protocols based on KeeLoq are used, or were used by various car manufacturers in anti-theft mechanisms.(More)
Electronic devices may undergo attacks going beyond traditional cryptanalysis. Side-channel analysis (SCA) is an alternative attack that exploits information leaking from physical implementations of e.g. cryptographic devices to discover cryptographic keys or other secrets. This work comprehensively investigates the application of a machine learning(More)
This paper describes the first differential power and electromagnetic analysis attacks performed on a hardware implementation of an elliptic curve cryptosystem. In the same time we also compared the metrics used in differential power and electromagnetic radiation attacks. We describe the use of the Pearson correlation coefficient, the distance of mean test(More)
Increased complexity in modern embedded systems has presented various important challenges with regard to side-channel attacks. In particular, it is common to deploy SoC-based target devices with high clock frequencies in security-critical scenarios; understanding how such features align with techniques more often deployed against simpler devices is vital(More)
In this paper, we describe an attack against nonce leaks in 384-bit ECDSA using an FFT-based attack due to Bleichenbacher. The signatures were computed by a modern smart card. We extracted the low-order bits of each nonce using a template-based power analysis attack against the modular inversion of the nonce. We also developed a BKZ-based method for the(More)
Efficient embedded systems are implemented taking into account both hardware and software (HW/SW). In the security domain, cryptosystems need to be resistant against Side-Channel Attacks (SCAs) to protect secret information. Therefore trade-offs between cost, performance and security need to be explored when implementing cryptosystems. The goal for this(More)
In this paper we describe an attack against nonce leaks in 384-bit ECDSA using an FFT-based attack due to Bleichenbacher. The signatures were computed by a modern smart card. We extracted the low-order bits of each nonce using a template-based power analysis attack against the modular inversion of the nonce. We also developed a BKZ-based method for the(More)
There exist only two articles that present clear results of practical DPA attacks against an MDPL prototype chip and both are essentially in favour of its security. Unsuccessful attacks are however only weak evidence of security, and at present it is unclear to what extent some proposed theoretical concepts affect the security provided by MDPL in practice.(More)