Elizabeth Wellsandt

Learn More
BACKGROUND Anterior cruciate ligament (ACL) injury predisposes individuals to early-onset knee joint osteoarthritis (OA). Abnormal joint loading is apparent after ACL injury and reconstruction. The relationship between altered joint biomechanics and the development of knee OA is unknown. HYPOTHESIS Altered knee joint kinetics and medial compartment(More)
which permits the noncommercial use, distribution, and reproduction of the article in any medium, provided the original author and source are credited. You may not alter, transform, or build upon this article without the permission of the Author(s). For reprints and permission queries, please visit SAGE's Web site at Objectives: Identification of patient(More)
Study Design Prospective cohort. Background The high risk of second anterior cruciate ligament (ACL) injuries after return to sport highlights the importance of return-to-sport decision making. Objective return-to-sport criteria frequently use limb symmetry indexes (LSIs) to quantify quadriceps strength and hop scores. Whether using the uninvolved limb in(More)
Anterior cruciate ligament (ACL) injury results in altered knee joint mechanics which frequently continue even after ACL reconstruction. The persistence of altered mechanical loading of the knee is of concern due to its likely role in the development of post-traumatic osteoarthritis (OA). Joint contact forces are associated with post-traumatic OA(More)
The objective of the study was to evaluate differences in gait mechanics 5 years after unilateral anterior cruciate ligament reconstruction surgery, for non-osteoarthritic (n = 24) versus osteoarthritic (n = 9) subjects. For the involved knee, the osteoarthritic group demonstrated significantly lower peak knee flexion angles (non-osteoarthritic = 24.3 ±(More)
  • 1