Learn More
Obligate intracellular bacterial pathogens of the genus Chlamydia are reported to enter host cells by both clathrin-dependent and clathrin-independent processes. C. trachomatis serovar K recently was shown to enter cells via caveolae-like lipid raft domains. We asked here how widespread raft-mediated entry might be among the Chlamydia. We show that C.(More)
BACKGROUND Chlamydia trachomatis (Ct) and Chlamydia pneumoniae (Cp) are medically significant infectious agents associated with various chronic human pathologies. Nevertheless, specific roles in disease progression or initiation are incompletely defined. Both pathogens infect established cell lines in vitro and polymerase chain reaction (PCR) has detected(More)
The mechanism by which the intracellular bacterial pathogen Chlamydia trachomatis enters eukaryotic cells is poorly understood. There are conflicting reports of entry occurring by clathrin-dependent and clathrin-independent processes. We report here that C. trachomatis serovar K enters HEp-2 and HeLa 229 epithelial cells and J-774A.1 mouse(More)
There has been a worldwide increase in the incidence of asthma, and the disease has greatly impacted the public health care system. Chlamydia pneumoniae has been reported as a possible contributing factor in asthma. The organism has been detected by polymerase chain reaction (PCR) in bronchial tissue, but there has been no direct evidence of viability. To(More)
Chlamydia trachomatis (C. trachomatis) is a clinically significant human pathogen and one of the leading causative agents of sexually transmitted diseases. As obligate intracellular bacteria, C. trachomatis has evolved strategies to redirect the host’s signaling and resources for its own survival and propagation. Despite the clinical notoriety of Chlamydia(More)
A chlamydial glycolipid antigen (GLXA) is shed into the medium of C. trachomatis-infected cell cultures. This study screened monoclonal antibodies (mAb), prepared in different laboratories by immunization with embryonated egg propagated elementary bodies (EB), for their ability to bind with infected cells and to react with purified GLXA isolated from(More)
A presentation vehicle was developed based on particulate gas vesicles produced by halophilic archaea. Gas vesicle epitope displays were prepared using standard coupling methods or recombinant DNA technology. When presented in the context of gas vesicle preparations, either the hapten, TNP, or a model six amino acid recombinant insert in the outer gas(More)
In the morphogenesis of embryonic feather germs the formation of dermal cell groupings is associated with the development of a highly regular pattern of birefringence in the dermis. This birefringence is due to a lattice-like system of collagenous tracts along which dermal cells become progressively aligned and grouped in regularly spaced sites. The(More)
In earlier studies we demonstrated recombinant gas vesicles from Halobacterium sp. NRC-1, expressing a model six amino acid insert, or native vesicles displaying chemically coupled TNP, each were immunogenic, and antigenic. Long-lived responses displaying immunologic memory were elicited without exogenous adjuvant. Here we report the generation and(More)
An emerging body of evidence suggests that half of asthma in both children and adults is associated with chronic lung infection. The aim of the present study was to determine the frequency of viable Chlamydia pneumoniae (Cp) and C. trachomatis (Ct) in the respiratory tracts of paediatric patients with chronic respiratory diseases. Bronchoalveolar lavage(More)