Learn More
Identification of the coding elements in the genome is a fundamental step to understanding the building blocks of living systems. Short peptides (< 100 aa) have emerged as important regulators of development and physiology, but their identification has been limited by their size. We have leveraged the periodicity of ribosome movement on the mRNA to define(More)
After fertilization, maternal factors direct development and trigger zygotic genome activation (ZGA) at the maternal-to-zygotic transition (MZT). In zebrafish, ZGA is required for gastrulation and clearance of maternal messenger RNAs, which is in part regulated by the conserved microRNA miR-430. However, the factors that activate the zygotic program in(More)
The endonucleolytic cleavage and polyadenylation of a pre-mRNA in mammalian cells requires two cis-acting elements, a highly conserved AAUAAA hexamer and an amorphous U- or GU-rich downstream element, that together constitute the "core" poly(A) site. The terminal redundancy of the HIV-1 pre-mRNA requires that the processing machinery disregard a core(More)
A major feature of epithelial cell polarity is regulated positioning of the mitotic spindle within the cell. Spindles in cells of symmetrically expanding tissues are predicted to align parallel to the tissue plane. Direct measurement of this alignment has been difficult in mammalian tissues. Here, we analyzed the position of spindles in intact mouse(More)
The architecture of the human immunodeficiency virus type 1 (HIV-1) genome presents an intriguing dilemma for the 3' processing of viral transcripts--to disregard a canonical 'core' poly(A) site processing signal present at the 5' end of the transcript and yet to utilize efficiently an identical signal that resides at the 3' end of the message. The choice(More)
The adenovirus major late transcription unit (MLTU) encodes five families of mRNAs, L1 to L5, each distinguished by a unique poly(A) site. Use of the promoter-proximal L1 poly(A) site predominates during early infection, whereas poly(A) site choice shifts to the promoter-distal sites during late infection. A mini-MLTU containing only the L1 and L3 poly(A)(More)
Sequence conservation among mammalian poly(A) sites is limited to the sequence AAUAAA, coupled with an amorphous downstream U- or GU-rich region. Since these sequences may also occur within the coding region of mRNAs, additional information must be required to define authentic poly(A) sites. Several poly(A) sites have been shown to contain sequences outside(More)
The adenomatous polyposis coli (APC) tumor suppressor gene is mutated in the majority of colon cancers, and its mutation may initiate cancer by multiple mechanisms. Recently, abnormal mitotic spindle orientation was shown in normal-appearing tissues from mice heterozygous for APC mutation. To determine the effect of APC mutation on spindle orientation in(More)
Orientation of mitotic spindles plays an integral role in determining the relative positions of daughter cells in a tissue. LKB1 is a tumor suppressor that controls cell polarity, metabolism, and microtubule stability. Here, we show that germline LKB1 mutation in mice impairs spindle orientation in cells of the upper gastrointestinal tract and causes(More)
Efficient cleavage and polyadenylation at the human immunodeficiency virus type-1 (HIV-1) poly(A) site requires an upstream 3'-processing enhancer to overcome the suboptimal sequence context of the AAUAAA hexamer. The HIV-1 3'-processing enhancer functions to stabilize the association of the pre-mRNA with cleavage and polyadenylation specificity factor(More)