Learn More
Identification of the coding elements in the genome is a fundamental step to understanding the building blocks of living systems. Short peptides (< 100 aa) have emerged as important regulators of development and physiology, but their identification has been limited by their size. We have leveraged the periodicity of ribosome movement on the mRNA to define(More)
The endonucleolytic cleavage and polyadenylation of a pre-mRNA in mammalian cells requires two cis-acting elements, a highly conserved AAUAAA hexamer and an amorphous U- or GU-rich downstream element, that together constitute the "core" poly(A) site. The terminal redundancy of the HIV-1 pre-mRNA requires that the processing machinery disregard a core(More)
After fertilization, maternal factors direct development and trigger zygotic genome activation (ZGA) at the maternal-to-zygotic transition (MZT). In zebrafish, ZGA is required for gastrulation and clearance of maternal messenger RNAs, which is in part regulated by the conserved microRNA miR-430. However, the factors that activate the zygotic program in(More)
Thyroid hormone (T3) is a critical regulator of intestinal epithelial development and homeostasis, but its mechanism of action within the gut is not well understood. We have examined the molecular mechanisms underlying the T3 activation of the enterocyte differentiation marker intestinal alkaline phosphatase (IAP) gene. RT-PCR and Western blotting showed(More)
A major feature of epithelial cell polarity is regulated positioning of the mitotic spindle within the cell. Spindles in cells of symmetrically expanding tissues are predicted to align parallel to the tissue plane. Direct measurement of this alignment has been difficult in mammalian tissues. Here, we analyzed the position of spindles in intact mouse(More)
Orientation of mitotic spindles plays an integral role in determining the relative positions of daughter cells in a tissue. LKB1 is a tumor suppressor that controls cell polarity, metabolism, and microtubule stability. Here, we show that germline LKB1 mutation in mice impairs spindle orientation in cells of the upper gastrointestinal tract and causes(More)
The furcocystocercous cercariae of the digenetic trematode, Proterometra macrostoma , possess a tail chamber into which their distome body withdraws prior to emergence from their snail intermediate host. The process of distome retraction and the conditions that trigger it in this species are not clear. The objectives of the present study were (1) to(More)
The full repertoire of human microRNAs (miRNAs) that could distinguish common (benign) nevi from cutaneous (malignant) melanomas remains to be established. In an effort to gain further insight into the role of miRNAs in melanoma, we applied Illumina next-generation sequencing (NGS) platform to carry out an in-depth analysis of miRNA transcriptome in(More)
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs (18-24 nucleotides) that have recently been shown to regulate gene expression during cancer progression. Dicer, a central enzyme in the multi-component miRNA biogenesis pathway, is involved in cutting precursor miRNAs to functionally mature forms. Emerging evidence shows that Dicer expression is(More)
The architecture of the human immunodeficiency virus type 1 (HIV-1) genome presents an intriguing dilemma for the 3' processing of viral transcripts--to disregard a canonical 'core' poly(A) site processing signal present at the 5' end of the transcript and yet to utilize efficiently an identical signal that resides at the 3' end of the message. The choice(More)