Elizabeth Russell Esposito

Learn More
BACKGROUND Individuals with leg amputations who use passive prostheses have greater metabolic demands than non-amputees likely due to limited net positive work compared to a biological ankle. New powered ankle-foot prostheses can perform net positive mechanical work to aid push-off capabilities, which may reduce metabolic demands. OBJECTIVES Compare(More)
BACKGROUND Ankle-foot orthoses (AFOs) are commonly prescribed during rehabilitation after limb salvage. AFO stiffness is selected to help mitigate gait deficiencies. A new custom dynamic AFO, the Intrepid Dynamic Exoskeletal Orthosis (IDEO), is available to injured service members but prescription guidelines are limited. QUESTIONS/PURPOSES In this study(More)
BACKGROUND Gait compensations following transtibial amputation negatively affect sound limb loading and increase the risk of knee osteoarthritis. Push-off assistance provided by new powered prostheses may decrease the demands on the sound limb. However, their effects in a young population in the early stages of prosthetic use are still unknown. The purpose(More)
UNLABELLED Ankle-foot orthoses (AFOs) can provide support and improve walking ability in individuals with plantarflexor weakness. Passive-dynamic AFO stiffness can be optimized for over-ground walking, however little research exists for uphill walking, when plantarflexor contributions are key. PURPOSE Compare uphill walking biomechanics (1) between(More)
BACKGROUND The Intrepid Dynamic Exoskeletal Orthosis (IDEO) is an ankle-foot orthosis developed to address the high rates of delayed amputation in the military. Its use has enabled many wounded Service Members to run again. During running, stiffness is thought to influence an orthosis' energy storage and return mechanical properties. This study examined the(More)
Passive-dynamic ankle-foot orthoses (AFOs) are commonly prescribed to improve locomotion for people with lower limb musculoskeletal weakness. The clinical prescription and design process are typically qualitative and based on observational assessment and experience. Prior work examining the effect of AFO design characteristics generally excludes higher(More)
The metabolic demand of walking generally increases following lower extremity amputation. This study used real-time visual feedback to modify biomechanical factors linked to an elevated metabolic demand of walking in individuals with transtibial amputation. Eight persons with unilateral, traumatic transtibial amputation and 8 uninjured controls(More)
BACKGROUND Recent literature indicates equivalent costs of walking can be achieved after a transtibial amputation when the individual is young, active, and/or has extensive access to rehabilitative care. It is unknown if a similar cohort with transfemoral amputation can also achieve lower metabolic costs of walking than previously reported. OBJECTIVE(More)
BACKGROUND Passive-dynamic ankle-foot orthoses are commonly prescribed to augment impaired ankle muscle function, however their design and prescription are largely qualitative. One design includes a footplate and cuff, and flexible strut connecting the two. During gait, deflection occurs along the strut, with the greatest deflection at a central bending(More)
BACKGROUND Surgical advances have substantially improved outcomes for individuals sustaining traumatic lower extremity injury. Injuries once requiring lower limb amputation are now routinely managed with limb reconstruction surgery. However, comparisons of functional outcomes between the procedures are inconclusive. PURPOSE To compare gait biomechanics(More)