Elizabeth Russell Esposito

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
The metabolic demand of walking generally increases following lower extremity amputation. This study used real-time visual feedback to modify biomechanical factors linked to an elevated metabolic demand of walking in individuals with transtibial amputation. Eight persons with unilateral, traumatic transtibial amputation and 8 uninjured controls(More)
BACKGROUND Surgical advances have substantially improved outcomes for individuals sustaining traumatic lower extremity injury. Injuries once requiring lower limb amputation are now routinely managed with limb reconstruction surgery. However, comparisons of functional outcomes between the procedures are inconclusive. PURPOSE To compare gait biomechanics(More)
The aim of this study was to analyze the repeatability of gait analysis studies performed across multiple trials, sessions, and laboratories. Ten healthy participants (6 male/4 female, mean age of 30, mean BMI of 24kg/m(2)) were assessed in 3 sessions conducted at each of the three Centers of Excellence for Amputee Care within the Department of Defense. For(More)
BACKGROUND Passive-dynamic ankle-foot orthoses are commonly prescribed to augment impaired ankle muscle function, however their design and prescription are largely qualitative. One design includes a footplate and cuff, and flexible strut connecting the two. During gait, deflection occurs along the strut, with the greatest deflection at a central bending(More)
The ability to navigate stairs step-over-step is an important functional outcome following severe lower leg injury and is difficult for many patients. Ankle-foot orthoses, such as the Intrepid Dynamic Exoskeletal Orthosis (IDEO), are often prescribed to improve function. This study compared stair climbing mechanics between IDEO users and able-bodied control(More)
UNLABELLED Ankle-foot orthoses (AFOs) can provide support and improve walking ability in individuals with plantarflexor weakness. Passive-dynamic AFO stiffness can be optimized for over-ground walking, however little research exists for uphill walking, when plantarflexor contributions are key. PURPOSE Compare uphill walking biomechanics (1) between(More)
  • 1