Learn More
Cellular traction forces are important quantitative measures in cell biology as they have provided much insight into cell behavior in contexts such as cellular migration, differentiation, and disease progression. However, the complex environment in vivo permits application of cell traction forces through multiple types of cell adhesion molecules. Currently(More)
Mechanical stretch plays an important role in regulating shape and orientation of the vascular endothelial cell. This morphological response to stretch is basic to angiogenesis, neovascularization, and vascular homeostasis, but mechanism remains unclear. To elucidate mechanisms, we used cell mapping rheometry to measure traction forces in primary human(More)
Knowledge of cell mechanical properties, such as elastic modulus, is essential to understanding the mechanisms by which cells carry out many integrated functions in health and disease. Cellular stiffness is regulated by the composition, structural organization, and indigenous mechanical stress (or prestress) borne by the cytoskeleton. Current methods for(More)
Mammalian cells of various types exhibit the remarkable ability to adapt to externally applied mechanical stresses and strains. Because of this adaptation, cells can maintain their endogenous mechanical tension at a preferred (homeostatic) level, which is essential for normal physiological functions of cells and tissues and provides protection against(More)
Local intracellular variations of cell mechanical properties, which are essential for vital cellular functions, have not been well characterized and are poorly understood. Here, we used results from our previous biomechanical imaging study to obtain relationships between intracellular shear modulus and prestress. We found that the subcellular shear modulus(More)
  • 1