Learn More
Adoption of targeted mass spectrometry (MS) approaches such as multiple reaction monitoring (MRM) to study biological and biomedical questions is well underway in the proteomics community. Successful application depends on the ability to generate reliable assays that uniquely and confidently identify target peptides in a sample. Unfortunately, there is a(More)
Group-based moving frames have a wide range of applications, from the classical equivalence problems in differential geometry to more modern applications such as computer vision. Here we describe what we call a discrete group-based moving frame, which is essentially a sequence of moving frames with overlapping domains. We demonstrate a small set of(More)
As a part of ongoing efforts of the NCI-FDA Interagency Oncology Task Force subcommittee on molecular diagnostics, members of the Clinical Proteomic Technology Assessment for Cancer program of the National Cancer Institute have submitted 2 protein-based multiplex assay descriptions to the Office of In Vitro Diagnostic Device Evaluation and Safety, US Food(More)
This article defines and describes best practices for the academic and business community to generate evidence of clinical utility for cancer molecular diagnostic assays. Beyond analytical and clinical validation, successful demonstration of clinical utility involves developing sufficient evidence to demonstrate that a diagnostic test results in an(More)
Clinical proteomics has the potential to enable the early detection of cancer through the development of multiplex assays that can inform clinical decisions. However, there has been some uncertainty among translational researchers and developers as to the specific analytical measurement criteria needed to validate protein-based multiplex assays. To begin to(More)
The findings and conclusions in this document are those of the author(s), who are responsible for its content, and do not necessarily represent the views of AHRQ. No statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. The information in this report is intended to help(More)
BACKGROUND Clinical proteomics presents great promise in biology and medicine because of its potential for improving our understanding of diseases at the molecular level and for detecting disease-related biomarkers for diagnosis, prognosis, and prediction of therapeutic responses. To realize its full potential to improve clinical outcome for patients,(More)
This article defines and describes best practices for the academic and business community to generate evidence of clinical utility for cancer molecular diagnostic assays. Beyond analytical and clinical validation, successful demonstration of clinical utility involves developing sufficient evidence to demonstrate that a diagnostic test results in an(More)