Elizabeth M. Srokowski

Learn More
Recombinantly-engineered elastin-like polypeptides (ELPs) possess many of the favourable attributes of the native elastin protein, making them an attractive option for designing biomaterials for tissue-engineering applications. The focus of this study was to synthesize and characterise the bulk material properties of two ELP sequences, ELP2 and ELP4,(More)
[Image: see text] In this work we investigate the feasibility of modifying porcine-derived BAM to include HA with a view to developing a model, artificial extracellular matrix for the study of bladder cell-matrix interactions. HA-DPTH was incorporated into BAM disks and then cross-linked oxidatively to a disulfide containing hydrogel. Disks were seeded with(More)
Previous work in our laboratory showed the potential of using a human recombinant elastin-like polypeptide (ELP) as a thromboresistant coating. In this work we investigate the use of three particular ELPs (ELP1, ELP2 and ELP4), that differ by molecular weight and number of repeating hydrophobic and cross-linking domains, as coatings to improve(More)
In this work, we expand on our understanding of the thrombogenicity of coatings prepared with three different recombinant elastin-like polypeptides (ELPs). The bulk platelet response of the ELP coatings was characterized following whole blood contact under physiological shear flow (300 s(-1) ) using flow cytometry. Prolonged exposure to shear flow (1-h)(More)
The surface properties of a family of elastin-like polypeptides (ELPs), differing in molecular weight and sequence length, were investigated to understand how the nature of the polypeptide film might contribute to their thrombogenic profile. Physical adsorption of the ELPs onto Mylar increased surface wettability as the sequence length decreased while X-ray(More)
  • 1