Learn More
Carbon nanotubes (CNTs) are possible nanoinjectors for the introduction of therapeutic agents into cells. To explore their interactions with a lipid bilayer membrane and to model the nanoinjection process, we used coarse-grained molecular dynamics to simulate the penetration of dipalmitoylphosphatidylcholine (DPPC) bilayers by single-walled CNTs. Lipids are(More)
Coarse-grained molecular dynamics simulations have been used to explore the interactions of C(60) and its derivatives with lipid bilayers. Pristine C(60) partitions into the bilayer core, whilst C(60)(OH)(20) experiences a central energetic barrier to permeation across the bilayer. For intermediate levels of derivatization, e.g. C(60)(OH)(10), this central(More)
Phase separation in a model asymmetric membrane is studied using Monte Carlo techniques. The membrane comprises two species of particles, which mimic different lipids in lipid bilayers and separately possess either zero or non-zero spontaneous curvatures. We study the influence of phase separation on membrane shape and the influence of the coupling of(More)
Detergent interactions with carbon nanotubes are of potential importance in a number of bionanotechnology applications. We investigate the interaction of lysophospholipids with single-walled carbon nanotubes via coarse-grained molecular dynamics. We present compelling evidence that the mechanism of adsorption of these detergents onto a carbon nanotube is(More)
The dispersion of carbon nanotubes (CNTs) in aqueous media is of potential importance in a number of biomedical applications. CNT solubilization has been achieved via the non-covalent adsorption of lipids and detergent onto the tube surface. We use coarse-grained molecular dynamics to study the self-assembly of CNTs with various amphiphiles, namely a(More)
Nanopores in membranes have a range of potential applications. Biomimetic design of nanopores aims to mimic key functions of biological pores within a stable template structure. Molecular dynamics simulations have been used to test whether a simple β-barrel protein nanopore can be modified to incorporate a hydrophobic barrier to permeation. Simulations have(More)
It is desirable that nanopores that are components of biosensors are gated, i.e., capable of controllable switching between closed (impermeable) and open (permeable) states. A central hydrophobic barrier within a nanopore may act as a voltage-dependent gate via electrowetting, i.e., changes in nanopore surface wettability by application of an electric(More)
The dispersion and manipulation of carbon nanotubes (CNTs) are of great importance if we are to utilise the unique properties of CNTs in a range of biological, electrical and mechanical applications. Recently, a designed amphiphilic peptide helix termed nano-1 has been shown to solubilise CNTs in aqueous solution. Furthermore, the peptide is capable of(More)
We investigate the competing effects of hydrophobic mismatch and chain stretching on the morphology and evolution of domains in lipid membranes via Monte Carlo techniques. We model the membrane as a binary mixture of particles that differ in their preferred lengths, with the shorter particles mimicking unsaturated nonraft lipids and the longer particles(More)
  • 1