Learn More
We examined the neuronal targets in the rat brain for the novel wakefulness-promoting agent modafinil and for amphetamine using c-Fos immunohistochemistry. Both modafinil and amphetamine induced neuronal expression of c-Fos-like immunoreactivity in the paraventricular nucleus of the hypothalamus, anterior hypothalamus and central nucleus of the amygdala.(More)
In vitro studies indicate that p42/p44MAPK phosphorylate both nuclear and cytoplasmic proteins. However, the functional targets of p42/p44MAPK activation in vivo remain unclear. To address this question, we localized activated p42/p44MAPK in hippocampus and cortex and determined their signaling effects after electroconvulsive shock treatment (ECT) in rats.(More)
p38MAPK has been implicated in the regulation of proinflammatory cytokines and apoptosis in vitro. To understand its role in neurodegeneration, we determined the time course and localization of the dually phosphorylated active form of p38MAPK in hippocampus after global forebrain ischemia. Phosphorylated p38MAPK and mitogen-activated protein(More)
Extensive efforts are under way to identify antiangiogenic therapies for the treatment of human cancers. Many proposed therapeutics target vascular endothelial growth factor (VEGF) or the kinase insert domain receptor (KDR/VEGF receptor-2/FLK-1), the mitogenic VEGF receptor tyrosine kinase expressed by endothelial cells. Inhibition of KDR catalytic activity(More)
A series of novel 1- or 3-(3-amino-1-phenyl propyl)-1,3-dihydro-2H-benzimidazol-2-ones as selective norepinephrine reuptake inhibitors was discovered. Several compounds such as 15 and 20 showed good hNET potency. Compounds 15 and 20 also displayed excellent selectivity at hNET that appeared superior to those of reboxetine and atomoxetine (4 and 5).
Thyroid hormone receptors (TRs) are nuclear receptors that are activated by thyroid hormone ligands and co-regulator proteins. Two receptor subtypes, TRalpha and TRbeta, have been suggested to play a role in numerous physiological functions. However, specificity of receptor subtype function and co-regulator interaction is unclear due to the lack of TR(More)
Norepinephrine and serotonin play an important role in a wide variety of biological processes and are implicated in a number of neurological disorders. A novel class of 1-(3-amino-1-phenylpropyl)indolin-2-ones was designed and synthesized that displays potent norepinephrine reuptake inhibition while maintaining high selectivity (>100-fold) against the human(More)
Efforts to identify new selective and potent norepinephrine reuptake inhibitors (NRIs) for multiple indications by structural modification of the previous 3-(arylamino)-3-phenylpropan-2-olamine scaffold led to the discovery of a novel series of 1-(indolin-1-yl)-1-phenyl-3-propan-2-olamines (9). Investigation of the structure-activity relationships revealed(More)
Sequential structural modifications of the aryloxypropanamine template (e.g., atomoxetine, 2) led to a novel series of 1-(3-amino-2-hydroxy-1-phenyl propyl)-1,3-dihydro-2H-benzimidazol-2-ones as selective norepinephrine reuptake inhibitors (NRIs). In general, this series of compounds potently blocked the human norepinephrine transporter (hNET) while(More)
The discovery of a series of 4-aminoethyl-3-(phenylsulfonyl)-1H-indoles, dual acting norepinephrine reuptake inhibitors (NRIs) and 5-HT(2A) receptor antagonists, is described. The synthesis and structure-activity relationship (SAR) of this novel series of compounds is also presented.