Elizabeth I. Tang

Learn More
During spermatogenesis, spermatids derived from meiosis simultaneously undergo extensive morphological transformation, to become highly specialized and metabolically quiescent cells, and transport across the seminiferous epithelium. Spermatids are also transported back-and-forth across the seminiferous epithelium during the epithelial cycle until they line(More)
Germ cell transport across the seminiferous epithelium during spermatogenesis requires the intricate coordination of cell junctions, signaling proteins, and both actin- and microtubule (MT)-based cytoskeletons. Although the involvement of cytoskeletons in germ cell transport has been suggested, the precise mechanism(s) remains elusive. Based on growing(More)
The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of(More)
During spermatogenesis, the transport of spermatids and the release of sperms at spermiation and the remodeling of the blood-testis barrier (BTB) in the seminiferous epithelium of rat testes require rapid reorganization of the actin-based cytoskeleton. However, the mechanism(s) and the regulatory molecule(s) remain unexplored. Herein we report findings that(More)
During spermatogenesis, developing germ cells are transported across the seminiferous epithelium. Studies propose that because microtubules (MTs) serve as the tracks for transporting cell organelles, they may also serve a similar function in the transport of developing germ cells. Polarized MTs may provide the tracks along which polarized actin(More)
During the seminiferous epithelial cycle of spermatogenesis, the ectoplasmic specialization (ES, a testis-specific adherens junction, AJ, type) maintains the polarity of elongating/elongated spermatids and confers adhesion to Sertoli cells in the seminiferous epithelium, and known as the apical ES. On the other hand, the ES is also found at the(More)
During spermatogenesis, the blood-testis barrier (BTB) segregates the adluminal (apical) and basal compartments in the seminiferous epithelium, thereby creating a privileged adluminal environment that allows post-meiotic spermatid development to proceed without interference of the host immune system. A key feature of the BTB is its continuous remodeling(More)
STUDY QUESTION Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood-testis barrier (BTB)? SUMMARY ANSWER Our findings illustrate that human Sertoli cells(More)
Non-receptor protein tyrosine kinases are cytoplasmic kinases that activate proteins by phosphorylating tyrosine residues, which in turn affect multiple functions in eukaryotic cells. Herein, we focus on the role of non-receptor protein tyrosine kinases, most notably, FAK, c-Yes and c-Src, in the transport of spermatids across the seminiferous epithelium(More)
In rodents and humans, testicular cells, similar to other mammalian cells, are supported by actin-, microtubule (MT)- and intermediate filament-based cytoskeletons. Although the cytoskeletal network of the testis serves an important role in regulating spermatogenesis during the epithelial cycle, most of the published findings in the literature are limited(More)