Learn More
The mitogen-activated protein kinase-extracellular signal-regulated kinase signaling element (MAPK-ERK) plays a critical role in natural killer (NK) cell lysis of tumor cells, but its upstream effectors were previously unknown. We show that inhibition of phosphoinositide-3 kinase (PI3K) in NK cells blocks p21-activated kinase 1 (PAK1), MAPK kinase (MEK) and(More)
Interleukin-2 (IL-2) prevents cell apoptosis and promotes survival, but the involved mechanisms have not been completely defined. Although phosphatidylinositide 3-kinase (PI 3-kinase) has been implicated in IL-2-mediated survival mechanisms, none of the 3 chains of the IL-2 receptor (IL-2R) expresses a binding site for PI 3-kinase. However, IL-2Rbeta does(More)
Emerging evidence suggests that NK-activatory receptors use KARAP/DAP12, CD3zeta, and FcepsilonRIgamma adaptors that contain immunoreceptor tyrosine-based activatory motifs to mediate NK direct lysis of tumor cells via Syk tyrosine kinase. NK cells may also use DAP10 to drive natural cytotoxicity through phosphoinositide 3-kinase (PI3K). In contrast to our(More)
Antigen stimulation of mast cells via FcepsilonRI, the high-affinity receptor for IgE, triggers a signaling cascade that requires Ca(2+) mobilization for exocytosis of secretory granules during an allergic response. This study investigates critical signaling components by using mutant RBL mast cells that are defective in antigen-stimulated phospholipase(More)
We have expressed dominant-active and dominant-negative forms of the Rho GTPases, Cdc42 and Rac, using vaccinia virus to evaluate the effects of these mutants on the signaling pathway leading to the degranulation of secretory granules in RBL-2H3 cells. Dominant-active Cdc42 and Rac enhance antigen-stimulated secretion by about twofold, whereas the dominant(More)
Characterization of defects in a variant subline of RBL mast cells has revealed a biochemical event proximal to IgE receptor (Fc epsilon RI)-stimulated tyrosine phosphorylation that is required for multiple functional responses. This cell line, designated B6A4C1, is deficient in both Fc epsilon RI-mediated degranulation and biosynthesis of several lipid(More)
The accessory protein MD2 has been implicated in LPS-mediated activation of the innate immune system by functioning as a co-receptor with TLR4 for LPS binding at the cell surface. Epithelial cells that play a role in primary immune response, such as in the lung or gut, often express TLR4, but are dependent on circulating soluble MD2 (sMD2) to bind TLR4 to(More)
Elevated levels of mitogen-activated protein kinase/extracellular regulatory kinase (MAPK/ERK) activity are frequently found in some cancer cells. In efforts to reduce tumor growth, attempts have been made to develop cancer therapeutic agents targeting the MAPK. Here, by use of biologic, biochemical, and gene manipulation methods in human polymorphonuclear(More)
The Toll-like receptor (TLR) family plays a fundamental role in host innate immunity by mounting a rapid and potent inflammatory response to pathogen infection. TLRs recognize distinct microbial components and activate intracellular signaling pathways that induce expression of host inflammatory genes. Extensive research in the past decade to understand(More)
Superantigens secreted by the bacterial pathogen Staphyloccocus aureus are extremely potent toxins that overstimulate the host immune system by binding to the MHC class II and T cell receptors and activating a large population of T cells. Superantigen infection has been shown to be the causative agents in acute diseases, food poisoning and toxic shock(More)