Elizabeth Harvey

Learn More
Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. However, deciphering the chemical drivers of these interspecies interactions remains challenging. Here, we report the isolation of 2-heptyl-4-quinolone (HHQ), released by Pseudoalteromonas piscicida, a marine(More)
In the plankton, heterotrophic microbes encounter and ingest phytoplankton prey, which effectively removes >50% of daily phytoplankton production in the ocean and influences global primary production and biochemical cycling rates. Factors such as size, shape, nutritional value, and presence of chemical deterrents are known to affect predation pressure.(More)
The ability of harmful algal species to form dense, nearly monospecific blooms remains an ecological and evolutionary puzzle. We hypothesized that predation interacts with estuarine salinity gradients to promote blooms of Heterosigma akashiwo (Y. Hada) Y. Hada ex Y. Hara et M. Chihara, a cosmopolitan toxic raphidophyte. Specifically, H. akashiwo's broad(More)
<i>Traces</i> is a collaboration between the artist Cynthia Beth Rubin and the Menden-Deuer Lab at the Graduate School of Oceanography, University of Rhode Island, which studies plankton, the microscopic marine creatures that comprise the most basic piece of our food chain. The original micro-captures are of specimens in small batches of water, devoid of(More)
Motility is a key trait that phytoplankton utilize to navigate the heterogeneous marine environment. Quantifying both intra- and inter-specific variability in trait distributions is key to utilizing traits to distinguish groups of organisms and assess their ecological function. Because examinations of intra-specific variability are rare, here we measured(More)
Citation: Poulson-Ellestad KL, Harvey EL, Johnson MD and Mincer TJ (2016) Evidence for Strain-Specific Exometabolomic Responses of the Coccolithophore Emiliania huxleyi to Grazing by the Dinoflagellate Oxyrrhis marina. Front. Mar. Sci. 3:1. doi: 10.3389/fmars.2016.00001 Evidence for Strain-Specific Exometabolomic Responses of the Coccolithophore Emiliania(More)
  • 1