Elizabeth E Regulski

Learn More
Riboswitches are intricate, metabolite-binding RNA structures found in the non-coding regions of mRNA. Allosteric changes in the riboswitch that are induced by metabolite binding are harnessed to control the genes of a variety of essential metabolic pathways in eubacteria and in some eukaryotes. In this chapter, we describe an RNA structure analysis(More)
A previous bioinformatics-based search for riboswitches yielded several candidate motifs in eubacteria. One of these motifs commonly resides in the 5' untranslated regions of genes involved in the biosynthesis of queuosine (Q), a hypermodified nucleoside occupying the anticodon wobble position of certain transfer RNAs. Here we show that this structured RNA(More)
We have identified a highly conserved RNA motif located upstream of genes encoding molybdate transporters, molybdenum cofactor (Moco) biosynthesis enzymes, and proteins that utilize Moco as a coenzyme. Bioinformatics searches have identified 176 representatives in gamma-Proteobacteria, delta-Proteobacteria, Clostridia, Actinobacteria, Deinococcus-Thermus(More)
Drosophila ananassae is a cosmopolitan species with a geographic range throughout most of the tropical and subtropical regions of the world. Previous studies of DNA sequence polymorphism in three genes has shown evidence of selection affecting broad expanses of the genome in regions with low rates of recombination in geographically local populations in and(More)
A novel family of riboswitches, called SAM-IV, is the fourth distinct set of mRNA elements to be reported that regulate gene expression via direct sensing of S-adenosylmethionine (SAM or AdoMet). SAM-IV riboswitches share conserved nucleotide positions with the previously described SAM-I riboswitches, despite rearranged structures and nucleotide positions(More)
  • 1