Elizabeth D Prescott

Learn More
Tissue injury generates endogenous factors that heighten our sense of pain by increasing the response of sensory nerve endings to noxious stimuli. Bradykinin and nerve growth factor (NGF) are two such pro-algesic agents that activate G-protein-coupled (BK2) and tyrosine kinase (TrkA) receptors, respectively, to stimulate phospholipase C (PLC) signalling(More)
The capsaicin receptor (TRPV1), a heat-activated ion channel of the pain pathway, is sensitized by phosphatidylinositol-4,5-bisphosphate (PIP2) hydrolysis after phospholipase C activation. We identify a site within the C-terminal domain of TRPV1 that is required for PIP2-mediated inhibition of channel gating. Mutations that weaken PIP2-TRPV1 interaction(More)
Mice deficient in src and fyn or src and yes move and breathe poorly and die perinatally, consistent with defects in neuromuscular function. Src and Fyn are associated with acetylcholine receptors (AChRs) in muscle cells, and Src and Yes can act downstream of ErbB2, suggesting roles for Src family kinases in signaling pathways regulating neuromuscular(More)
DNA topoisomerase IIbeta is shown to have an unsuspected and critical role in neural development. Neurogenesis was normal in IIbeta mutant mice, but motor axons failed to contact skeletal muscles, and sensory axons failed to enter the spinal cord. Despite an absence of innervation, clusters of acetylcholine receptors were concentrated in the central region(More)
Neurons of the visual, auditory and vestibular systems that signal through graded changes in membrane potential rely upon synaptic ribbons for the exquisite control of neurotransmitter release. Although clearly important for tonic neurotransmission, the precise role of synaptic ribbons remains elusive. In recent years, several genetic, biochemical,(More)
  • 1