Elizabeth D Carlton

Learn More
Effective immune responses are coordinated by interactions among the nervous, endocrine, and immune systems. Mounting immune, inflammatory, and sickness responses requires substantial energetic investments, and as such, an organism may need to balance energy allocation to these processes with the energetic demands of other competing physiological systems.(More)
Psychosocial stress, specifically social isolation, is an important risk factor for the development of a variety of psychological and physiological disorders. Changes in immune function have been hypothesized to mediate this relationship. The current study used the prairie vole (Microtus ochrogaster) model of isolation-induced depressive-like behavior to(More)
The study of immunity has become an important area of investigation for researchers in a wide range of areas outside the traditional discipline of immunology. For the last several decades, psychoneuroimmunology (PNI) has strived to identify key interactions among the nervous, endocrine and immune systems and behavior. More recently, the field of ecological(More)
Most free-living animals have finite energy stores that they must allocate to different physiological and behavioral processes. In times of energetic stress, trade-offs in energy allocation among these processes may occur. The manifestation of trade-offs may depend on the source (e.g., glucose, lipids) and severity of energy limitation. In this study, we(More)
Mounting a sickness response is an energetically expensive task and requires precise balancing of energy allocation to ensure pathogen clearance while avoiding compromising energy reserves. Sickness intensity has previously been shown to be modulated by food restriction, body mass, and hormonal signals of energy. In the current study, we tested the(More)
Species that display seasonal variation in sickness intensity show the most intense response in the season during which they have the highest body mass, suggesting that sickness intensity may be limited by an animal's energy stores. Siberian hamsters (Phodopus sungorus) display lower body masses and less intense sickness when housed in short, winter-like(More)
Many seasonally breeding species, including Siberian hamsters (Phodopus sungorus), exhibit seasonal variation in sickness responses. One hypothesis regarding the mechanism of this variation is that sickness intensity tracks an animal's energetic state, such that sickness is attenuated in the season that an animal has the lowest fat stores. Energetic state(More)
  • 1