Learn More
Dispersal is a key determinant of a population's evolutionary potential. It facilitates the propagation of beneficial alleles throughout the distributional range of spatially outspread populations and increases the speed of adaptation. However, when habitat is heterogeneous and individuals are locally adapted, dispersal may, at the same time, reduce fitness(More)
A powerful way to map functional genomic variation and reveal the genetic basis of local adaptation is to associate allele frequency across the genome with environmental conditions. Serpentine soils, characterized by high heavy-metal content and low calcium-to-magnesium ratios, are a classic context for studying adaptation of plants to local soil(More)
The evolutionary potential of populations is mainly determined by population size and available genetic variance. However, the adaptability of spatially structured populations may also be affected by dispersal: positively by spreading beneficial mutations across sub-populations, but negatively by moving locally adapted alleles between demes. We develop an(More)
Estimations of genome size and its variation can provide valuable information regarding the genetic diversity of organisms and their adaptation potential to heterogeneous environments. We used flow cytometry to characterize the variation in genome size among 40 isolates of Cenococcum geophilum, an ectomycorrhizal fungus with a wide ecological and(More)
  • 1