Learn More
Recently identified BLast Colony Forming Cells (BL-CFCs) from in vitro differentiated embryonic stem (ES) cells represent the common progenitor of hematopoietic and endothelial cells, the hemangioblast. Access to this initial cell population committed to the hematopoietic lineage provides a unique opportunity to characterize hematopoietic commitment events.(More)
  • Dongjun Lee, Changwon Park, +10 authors Kyunghee Choi
  • 2008
FLK1-expressing (FLK1(+)) mesoderm generates blood and vessels. Here, we show that combined BMP, Notch, and Wnt signaling is necessary for efficient FLK1(+) mesoderm formation from embryonic stem cells (ESCs). Inhibition of BMP, Notch, and Wnt signaling pathways greatly decreased the generation of FLK1(+) mesoderm and expression of the Ets transcription(More)
The receptor tyrosine kinase FLK1 and the transcription factor SCL play crucial roles in the establishment of hematopoietic and endothelial cell lineages in mice. We have previously used an in vitro differentiation model of embryonic stem (ES) cells and demonstrated that hematopoietic and endothelial cells develop via sequentially generated FLK1(+) and(More)
The expression of a gene, designated as Retroviral insertion site (Ris)2, was activated by retroviral DNA integration in an immortalized primitive erythroid cell line, EB-PE. Ris2 was also expressed at high levels in all human tumor cell lines analysed. Consistently, NIH3T3 fibroblasts overexpressing Ris2 formed tumors in Rag2 -/- mice when injected(More)
  • Fang Liu, Suk Ho Bhang, +12 authors Kyunghee Choi
  • 2013
The fetal liver kinase 1 (FLK-1)(+) hemangioblast can generate hematopoietic, endothelial, and smooth muscle cells (SMCs). ER71/ETV2, GATA2, and SCL form a core transcriptional network in hemangioblast development. Transient coexpression of these three factors during mesoderm formation stage in mouse embryonic stem cells (ESCs) robustly enhanced(More)
Accumulating studies support the idea that a common progenitor, termed the hemangioblast, generates both hematopoietic and endothelial cell lineages. To better define the relationship between these cell lineages, we have generated knock-in embryonic stem (ES) cells carrying a non-functional human CD4 at the Scl locus. By using in vitro differentiated(More)
Embryonic stem (ES) cells can differentiate into many different somatic cells in culture. To better correlate hematopoietic and endothelial cell differentiation of ES cells in currently available protocols, we compared fetal liver kinase-1 (Flk-1)-, stem cell leukemia (Scl)-, and vascular endothelial-cadherin (VE-cadherin)-expressing cells generated in(More)
  • 1