Elizabeth A. Williamson

Learn More
Metnase is a human SET and transposase domain protein that methylates histone H3 and promotes DNA double-strand break repair. We now show that Metnase physically interacts and co-localizes with Topoisomerase IIalpha (Topo IIalpha), the key chromosome decatenating enzyme. Metnase promotes progression through decatenation and increases resistance to the Topo(More)
DNA replication produces tangled, or catenated, chromatids, that must be decatenated prior to mitosis or catastrophic genomic damage will occur. Topoisomerase IIalpha (Topo IIalpha) is the primary decatenating enzyme. Cells monitor catenation status and activate decatenation checkpoints when decatenation is incomplete, which occurs when Topo IIalpha is(More)
Troglitazone, a thiazolidinedione derivative, is a widely used antidiabetic drug that binds and activates peroxisome proliferator-activated receptor gamma (PPARgamma) and enhances insulin sensitivity. It induces differentiation of adipocytes, which highly express PPARgamma. We report that human prostate cancer cells expressed PPARgamma at prominent levels(More)
Metnase is a human protein with methylase (SET) and nuclease domains that is widely expressed, especially in proliferating tissues. Metnase promotes non-homologous end-joining (NHEJ), and knockdown causes mild hypersensitivity to ionizing radiation. Metnase also promotes plasmid and viral DNA integration, and topoisomerase IIα (TopoIIα)-dependent chromosome(More)
Metnase is a fusion gene comprising a SET histone methyl transferase domain and a transposase domain derived from the Mariner transposase. This fusion gene appeared first in anthropoid primates. Because of its biochemical activities, both histone (protein) methylase and endonuclease, we termed the protein Metnase (also called SETMAR). Metnase methylates(More)
Actin rearrangement, the polymerization of globular actin (G-actin) to filamentous actin, causes morphological changes in dendritic spines and is hypothesized to be a substrate of learning and memory. The ovarian hormone estradiol promotes hippocampal actin rearrangement and enhances performance on hippocampus-dependent tasks, including object placement(More)
Activity of the c-jun N-terminal kinase (JNK) has been shown in hematopoietic cells transformed by p210 BCR-ABL. However, analysis has not been reported for hematopoietic cells on the consequences of this activity for c-jun promoter regulation within its distinctive proximal 8-base consensus CRE-like element, an element linked to JNK-mediated increase in(More)
Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is(More)
The organic arsenical known as melarsoprol (Mel-B) is used to treat African trypanosomiasis. Recently, another arsenical, As2O3 was shown to be effective in treatment of acute promyelocytic leukaemia. We have investigated the anti-tumour activities of Mel-B either with or without all-trans-retinoic acid (ATRA) using the MCF-7 human breast cancer cells, as(More)
Chk1 both arrests replication forks and enhances repair of DNA damage by phosphorylation of downstream effectors. Metnase (also termed SETMAR) is a SET histone methylase and transposase nuclease protein that promotes both DNA double strand break (DSB) repair and re-start of stalled replication forks. We previously found that Chk1 phosphorylation of Metnase(More)