Elizabeth A. Stockdale

Learn More
 The existence of soluble organic forms of N in rain and drainage waters has been known for many years, but these have not been generally regarded as significant pools of N in agricultural soils. We review the size and function of both soluble organic N extracted from soils (SON) and dissolved organic N present in soil solution and drainage waters (DON) in(More)
The spatial location of microorganisms and their activity within the soil matrix have major impacts on biological processes such as nutrient cycling. However, characterizing the biophysical interface in soils is hampered by a lack of techniques at relevant scales. A novel method for studying the distribution of microorganisms that have incorporated(More)
Field trials were carried out to study the fate of15N-labelled urea applied to summer maize and winter wheat in loess soils in Shaanxi Province, north-west China. In the maize experiment, nitrogen was applied at rates of 0 or 210 kg N ha−1, either as a surface application, mixed uniformly with the top 0.15 m of soil, or placed in holes 0.1 m deep adjacent(More)
Plant roots and microorganisms interact and compete for nutrients within the rhizosphere, which is considered one of the most biologically complex systems on Earth. Unraveling the nitrogen (N) cycle is key to understanding and managing nutrient flows in terrestrial ecosystems, yet to date it has proved impossible to analyze and image N transfer in situ(More)
An earlier paper (Macdonald et al., 1997; J. Agric. Sci. (Cambridge) 129, 125) presented data from a series of field experiments in which 15N-labelled fertilizers were applied in spring to winter wheat, winter oilseed rape, potatoes, sugar beet and spring beans grown on four different soils in SE England. Part of this N was retained in the soil and some(More)
One approach to decrease the environmental impact of crop production and reduce costs is to optimize agronomic practices and genotypes so that nutrients are used more efficiently. In this study the effects of agronomic practices (rotations, crop protection, fertilization) on yields, nitrogen use efficiency (NUE) and associated parameters were studied in an(More)
The ability of plants to compete effectively for nitrogen (N) resources is critical to plant survival. However, controversy surrounds the importance of organic and inorganic sources of N in plant nutrition because of our poor ability to visualize and understand processes happening at the root-microbial-soil interface. Using high-resolution nano-scale(More)
Within Europe, organic pigs are produced in many different ways according to local environment, national standards and farm-specific facilities and preferences. However, all herds must adhere to the minimum standards for organic production set out in European Directives and, in consequence, face some common challenges in the management of health and(More)
A rapid assay which measured the biological activity of Clostridium perfringens enterotoxin was developed. The method involved the rapid killing of Vero cells by enterotoxin produced by C. perfringens grown in Duncan and Strong sporulation medium. Serial dilutions of toxin were added to Vero cells either in suspension or grown as monolayers in wells of a(More)
Modelling nitrogen (N) dynamics in agricultural soils can improve our understanding of the nitrogen cycle in rotational systems. NDICEA (Nitrogen Dynamics in Crop rotations in Ecological Agriculture) is a tool to model soil N dynamics for maximum nitrogen use efficiency (NUE) and minimum environmental impacts from agricultural fertilization. In this study(More)