Learn More
Three forms of nonassociative learning (habituation, dishabituation, and sensitization) have commonly been explained by a dual-process view in which a single decrementing process produces habituation and a single facilitatory process produces both dishabituation and sensitization. A key prediction of this view is that dishabituation and sensitization should(More)
Recent behavioral experiments examining the siphon withdrawal reflex of Aplysia have revealed inhibitory effects of strong tail shock, a stimulus commonly used as an unconditioned stimulus in studies of associative and nonassociative learning in Aplysia. We utilized a reduced preparation to perform a cellular analysis of tail shock-induced inhibition in the(More)
ureI encodes an integral cytoplasmic membrane protein. It is present in the urease gene cluster of Helicobacter pylori and is essential for infection and acid survival, but its role is unknown. To determine the function of UreI protein, we produced H. pylori ureI deletion mutants and measured the pH dependence of urease activity of intact and lysed bacteria(More)
We have examined cells cultured from ectoderm-misexpressing Neurogenin1 (Ngn1) to describe better the extent to which this gene can control aspects of neuronal phenotype including motility, morphology, excitability, and synaptic properties. Like primary spinal neurons which normally express Ngn1, cells in Ngn1-misexpressing cultures exhibit a(More)
The serine threonine protein kinase encoded by the shaggy locus has been implicated in neurogenesis in Drosophila. In vertebrates, the shaggy homolog, GSK3beta, is involved in early pattern formation, specifically in setting up the dorsal ventral axis. In the present study we have cloned the Xenopus homolog of the shaggy kinase and show (1) that GSK3beta is(More)
The role of the periplasmic alpha-carbonic anhydrase (alpha-CA) (HP1186) in acid acclimation of Helicobacter pylori was investigated. Urease and urea influx through UreI have been shown to be essential for gastric colonization and for acid survival in vitro. Intrabacterial urease generation of NH3 has a major role in regulation of periplasmic pH and inner(More)
The capacity for neuromodulation and biophysical plasticity is a defining feature of most mature neuronal cell types. In several cases, modulation at the level of the individual neuron has been causally linked to changes in the functional output of a neuronal circuit and subsequent adaptive changes in the organism's behavioral responses. Understanding how(More)
The marine mollusc Aplysia californica provides an excellent preparation with which to examine the development of the neuronal control of behavior for 2 reasons: first, adult Aplysia exhibit a variety of behaviors that are well understood in cellular terms; and second, the development of Aplysia from embryo to adult has been studied in considerable detail.(More)
The defensive withdrawal reflex of the mantle organs of Aplysia californica has 2 major components, siphon withdrawal and gill withdrawal. In the previous paper of this series (Rankin and Carew, 1987), the development of 2 forms of nonassociative learning, habituation and dishabituation, was examined in the siphon withdrawal component of the reflex. In the(More)
Evidence from a variety of both vertebrate and invertebrate preparations has demonstrated that modulation of the intrinsic firing patterns of individual neurons can have a dramatic effect on the functional output of a neural circuit. Although the mechanisms underlying the production and modulation of intrinsic firing patterns have been extensively studied(More)