Elizabeth A. Elliott

Learn More
Neutrophils are highly specialized innate immune effector cells that evolved for antimicrobial host defense. In response to inflammatory stimuli and pathogens, they form neutrophil extracellular traps (NETs), which capture and kill extracellular microbes. Deficient NET formation predisposes humans to severe infection, but, paradoxically, dysregulated NET(More)
The mechanism limiting forced expiratory flow is explained on the basis that a local flow velocity reaches the local speed of wave propagation at a point, called the choke point, in intrathoracic airways. This theoretical approach to the "waterfall effect" leads to selection of the analogy of constricted open-channel flow to apply to the elastic network of(More)
In this study the pattern of arthrodial membrane deposition in Callinectes sapidus was determined by histological and ultrastructural examination of tissues from the carpus joint of the cheliped collected during premolt, ecdysis, postmolt, and intermolt. Apolysis in the arthrodial membrane occurs at stage D(0) and is synchronous with apolysis of the(More)
Endotracheal tube (ETT) resistance measured in isolation may differ from the effective ETT resistance in vivo. Much of this difference results from the dissipation of kinetic energy near regions of abrupt cross-sectional area change at the end of the ETT. Measurements made on an artificial ETT-tracheal model illustrate that effective ETT resistance is(More)
Work on flow limitation in elastic tubes of the body first relied on simple descriptions and intuitive modeling. Mathematical modeling led to the identification of a wave speed mechanism analogous to that of hydraulic flow in sluices and in supersonic nozzles. The basic pulse wave governs in the fluid-filled elastic tube. How this wave speed depends on the(More)
With a computer technique variability of the configuration of maximum expiratory flow-volume (MEFV) curves was studied in terms of slope ratio, SR. SR = dV/dV divided by V/V, where V is the instantaneous flow and V is the volume increment above residual volume.) Approximately four SR-V curves, each based on three to five smoothed and averaged MEFV curves,(More)
We measured transdiaphragmatic pressure (Pdi) during forced expiratory vital capacity (FVC) maneuvers in 13 normal subjects and electromyographic activity of the diaphragm (edi) in 8 of these subjects. In all subjects, Pdi increased at the initiation of the FVC. In most, this increase lasted 30--50 ms and reached levels well above the Pdi observed at total(More)
Abdominothoracic shape during the forced vital capacity was studied in 10 normal subjects using magnetometers to monitor anteroposterior diameters at the level of the manubrium, xiphoid, and epigastrium, lateral rib cage diameter at the xiphoid level, and vertical motion of the rib cage. Thoracic cross-sectional area change at the xiphoid level was found to(More)
Brevetoxins are a family of ladder-framed polyether toxins produced during blooms of the marine dinoflagellate, Karenia brevis. Consumption of shellfish or finfish exposed to brevetoxins can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are believed to be due to the activation of voltage-sensitive sodium(More)