Elizabeth A. Davies

Learn More
The T cell antigen receptor (TCR) and its ligand peptide-major histocompatibility complex (MHC) are small (approximately 7 nm) compared with other abundant cell surface molecules such as integrins, CD43, and CD45 (23-50 nm). We have proposed that molecules at the T cell/antigen-presenting cell (APC) interface segregate according to size, with small(More)
BACKGROUND The T-lymphocyte cell-surface molecule, CD2, was the first heterophilic cell-adhesion molecule to be discovered and has become an important paradigm for understanding the structural basis of cell adhesion. Interaction of CD2 with its ligands. CD58 (in humans) and CD48 (in mice and rats), contributes to antigen recognition by T cells. CD2, CD48(More)
Insights into the structural basis of protein-protein recognition have come principally from the analysis of proteins such as antibodies, hormone receptors, and proteases that bind their ligands with relatively high affinity (Ka approximately 10(9) M-1). In contrast, few studies have been done on the very low affinity interactions mediating cell adhesion(More)
The structural analysis of surface proteins belonging to the CD2 subset of the immunoglobulin superfamily has yielded important insights into transient cellular interactions. In mice and rats, CD2 and CD244 (2B4), which are expressed predominantly on T cells and natural killer cells, respectively, bind the same, broadly expressed ligand, CD48. Structures of(More)
The mechanism by which low affinity adhesion molecules function to produce stable cell-cell adhesion is unknown. In solution, the interaction of human CD2 with its ligand CD58 is of low affinity (500 mM-1) and the interaction of rat CD2 with its ligand CD48 is of still lower affinity (40 mM-1). At the molecular level, however, the two systems are likely to(More)
The International Conference on Harmonization considers older people a 'special population', as they differ from younger adults in terms of comorbidity, polypharmacy, pharmacokinetics and greater vulnerability to adverse drug reactions (ADRs). Medical practice is often based on single disease guidelines derived from clinical trials that have not included(More)
The evolutionary success of the immunoglobulin superfamily (IgSF) is thought to reflect the ability of IgSF protein domains to form stable structural units. The role of glycosylation in stabilizing these domains is controversial, however. In this study a systematic analysis of the effect of glycosylation on the ligand-binding properties of the cell-cell(More)
Listeria monocytogenes NCTC 5105 and F6861 were evaluated for sensitivity to nisin. The results confirmed those previously published indicating marked differences in the sensitivity of the two strains. Mutants with increased resistance to nisin could be isolated from the less sensitive F6861 strain at a frequency of 10(-6) to 10(-7). Using a nisin specific(More)
CD2 is a T lymphocyte cell-adhesion molecule (CAM) belonging to the immunoglobulin superfamily (IgSF) which mediates transient adhesion of T cells to antigen-presenting cells and target cells. Reported ligands for human CD2 include the structurally-related IgSF CAMs CD58 (LFA-3) and CD48 as well as, more controversially, the unrelated cell-surface(More)
The B cell surface molecule CD22 is a member of the Siglec family. Siglecs possess a conserved membrane-distal immunoglobulin domain that mediates binding to sialylated glycoproteins or glycolipids. Although the structural basis of sialic acid recognition by Siglecs is quite well understood, the binding properties of the interaction between Siglecs and(More)