Elizabeth A Berliner

Learn More
Kinesin, a two-headed motor enzyme molecule, hydrolyses ATP to direct organelle transport along microtubules. As it moves along a microtubule, kinesin remains associated with, or 'tracks', microtubule protofilaments. We have prepared truncated kinesin derivatives that contain either two mechanochemical head domains or only a single head. Unlike intact(More)
Kinesin, an ATP-dependent microtubule motor, can be studied in vitro in motility assays where the kinesin is nonspecifically adsorbed to a surface. However, adsorption can inactivate kinesin and may alter its reaction kinetics. We therefore prepared a biotinated kinesin derivative, K612-BIO, and characterized its activity in solution and when bound to(More)
Previous studies on the motor enzyme kinesin suggesting that the enzyme molecule tightly binds to a microtubule by only one of its two mechanochemical head domains were performed with multiple kinesin molecules on each microtubule, raising the possibility that interactions between adjacent bound molecules may interfere with the binding of the second head.(More)
The oligomeric structure was determined for four recombinant kinesin derivatives containing N-terminal fragments of the kinesin alpha-subunit. Some of the proteins were dimeric (two-headed) molecules with mechanochemical properties similar to those of intact kinesin. Comparison of the primary and quaternary structures of the derivatives with those of intact(More)
The regulatory domain of scallop myosin, consisting of a regulatory light chain (R-LC), an essential light chain (E-LC), and a portion of heavy chain, occupies the neck region of myosin. This domain is directly involved in the regulation of molluscan muscle contraction, which is triggered by direct Ca2+ binding to myosin. We have isolated a soluble(More)
The N-terminal residues of the two heavy chains of the motor enzyme kinesin form two globular "heads"; the heads are attached to a "rod" domain which is a two-stranded alpha-helical coiled-coil. Interaction between the heads is thought to be important to kinesin function. The rod may not be necessary for head-head interactions because a heavy chain(More)