Elizabeth A Anderson

Learn More
A nanoparticle magnetic resonance imaging (MRI) contrast agent was developed by conjugation of more than 500 gadolinium chelate groups onto a viral capsid. The high density of paramagnetic centers and slow tumbling rate of modified MS2 capsids provided enhanced T1 relaxivities up to 7200 mM-1s-1 per particle. A bimodal imaging agent was generated by(More)
Amyloid-β (Aβ) self-assembly into cross-β amyloid fibrils is implicated in a causative role in Alzheimer's disease pathology. Uncertainties persist regarding the mechanisms of amyloid self-assembly and the role of metastable prefibrillar aggregates. Aβ fibrils feature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been(More)
The self-assembly of amyloid peptides is influenced by hydrophobicity, charge, secondary structure propensity, and sterics. Previous experiments have shown that increasing hydrophobicity at the aromatic positions of the amyloid-β 16-22 fragment (Aβ(16-22)) without introducing steric restraints greatly increases the rate of self-assembly and(More)
Aromatic amino acids have been shown to promote self-assembly of amyloid peptides, although the basis for this amyloid-inducing behavior is not understood. We adopted the amyloid-β 16-22 peptide (Aβ(16-22), Ac-KLVFFAE-NH(2)) as a model to study the role of aromatic amino acids in peptide self-assembly. Aβ(16-22) contains two consecutive Phe residues (19 and(More)
The accumulation of senile plaques composed of amyloid β (Aβ) fibrils is a hallmark of Alzheimer's disease, although prefibrillar oligomeric species are believed to be the primary neurotoxic congeners in the pathogenesis of Alzheimer's disease. Uncertainty regarding the mechanistic relationship between Aβ oligomer and fibril formation and the cytotoxicity(More)
  • 1