Elizabeth A. Amin

Learn More
There are many reported examples of small structural modifications to GPCR-targeted ligands leading to major changes in their functional activity, converting agonists into antagonists or vice versa. These shifts in functional activity are often accompanied by negligible changes in binding affinity. The current perspective focuses on outlining and analyzing(More)
Anthrax is an infectious disease caused by Bacillus anthracis, a Gram-positive, rod-shaped, anaerobic bacterium. The lethal factor (LF) enzyme is secreted by B. anthracis as part of a tripartite exotoxin and is chiefly responsible for anthrax-related cytotoxicity. As LF can remain in the system long after antibiotics have eradicated B. anthracis from the(More)
Anthrax is an acute infectious disease caused by the spore-forming bacterium Bacillus anthracis. The anthrax toxin lethal factor (LF), an 89-kDa zinc hydrolase secreted by the bacilli, is the toxin component chiefly responsible for pathogenesis and has been a popular target for rational and structure-based drug design. Although hundreds of small-molecule(More)
Matrix metalloproteinases (MMPs) have been the subject of intense research because of their roles in tumor metastasis and in the rise and spread of degenerative diseases such as osteo- and rheumatoid arthritis. A preliminary class of 140 druglike, small-molecule matrix metalloproteinase-3 inhibitors, intended as starting scaffolds for optimization and(More)
Three-dimensional quantitative structure-activity relationship models have been derived using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for two training sets of arylsulfonyl isoquinoline-based and thazine/thiazepine-based matrix metalloproteinase inhibitors (MMPIs). The crystal structure of(More)
  • 1