Elizabete de Souza Cândido

Learn More
Storage proteins perform essential roles in plant survival, acting as molecular reserves important for plant growth and maintenance, as well as being involved in defense mechanisms by virtue of their properties as insecticidal and antimicrobial proteins. These proteins accumulate in storage vacuoles inside plant cells, and, in response to determined(More)
Zantedeschia aethiopica is an evergreen perennial plant cultivated worldwide and commonly used for ornamental and medicinal purposes including the treatment of bacterial infections. However, the current understanding of molecular and physiological mechanisms in this plant is limited, in comparison to other non-model plants. In order to improve understanding(More)
This work aimed to study the interaction between the model plant Arabidopsis thaliana and Xanthomonas campestris pv. campestris (Xcc), the pathogen responsible for black rot of crucifers. The response of 32 accessions of A. thaliana to the Brazilian isolate of Xcc CNPH 17 was evaluated. No immunity-like response was observed. “CS1308”, “CS1566” and “CS1643”(More)
Antibiotics are important therapeutic agents commonly used for the control of bacterial infectious diseases; however, resistance to antibiotics has become a global public health problem. Therefore, effective therapy in the treatment of resistant bacteria is necessary and, to achieve this, a detailed understanding of mechanisms that underlie drug resistance(More)
The analysis of plant proteomes has drastically expanded in the last few years. Mass spectrometry technology, stains, software and progress in bioinformatics have made identification of proteins relatively easy. The assignment of proteins to particular organelles and the development of better algorithms to predict sub-cellular localization are examples of(More)
Antimicrobial peptides (AMPs) are effective antibiotic agents commonly found in plants, animals, and microorganisms, and they have been suggested as the future of antimicrobial chemotherapies. It is vital to understand the molecular details that define the mechanism of action of resistance to AMPs for a rational planning of the next antibiotic generation(More)
The ability of pathogenic bacteria to aggregate and form biofilm represents a great problem for public health, since they present extracellular components that encase these micro-organisms, making them more resistant to antibiotics and host immune attack. This may become worse when antibiotic-resistant bacterial strains form biofilms. However, antibiofilm(More)
In recent years the antimicrobial peptides (AMPs) have been prospected and designed as new alternatives to conventional antibiotics. Indeed, AMPs have presented great potential toward pathogenic bacterial strains by means of complex mechanisms of action. However, reports have increasingly emerged regarding the mechanisms by which bacteria resist AMP(More)
Stingrays commonly cause human envenoming related accidents in populations of the sea, near rivers and lakes. Transcriptomic profiles have been used to elucidate components of animal venom, since they are capable of providing molecular information on the biology of the animal and could have biomedical applications. In this study, we elucidated the(More)
  • 1