Learn More
Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF) seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC), a central hub for(More)
Social learning is essential for adaptive behavior in humans. Neurofeedback based on functional magnetic resonance imaging (fMRI) trains control over localized brain activity. It can disentangle learning processes at the neural level and thus investigate the mechanisms of operant conditioning with explicit social reinforcers. In a pilot study, a(More)
Recent advances in real-time functional magnetic resonance imaging (rt-fMRI) techniques enable online feedback about momentary brain activity from a localized region of interest. The anterior cingulate cortex (ACC) as a central hub for cognitive and emotional networks and its modulation has been suggested to elicit mood changes. In the presented real-time(More)
Neurofeedback (NF) based on real-time functional magnetic resonance imaging (rt-fMRI) allows voluntary regulation of the activity in a selected brain region. For the training of this regulation, a well-designed feedback system is required. Social reward may serve as an effective incentive in NF paradigms, but its efficiency has not yet been tested.(More)
Auditory verbal hallucinations (AVHs) are a hallmark of schizophrenia and can significantly impair patients' emotional, social, and occupational functioning. Despite progress in psychopharmacology, over 25% of schizophrenia patients suffer from treatment-resistant hallucinations. In the search for alternative treatment methods, neurofeedback (NF) emerges as(More)
  • 1