Learn More
Pattern recognition via Toll-like receptors (TLR) by antigen-presenting cells is an important element of innate immunity. We report that wild-type measles virus but not vaccine strains activate cells via both human and murine TLR2, and this is a property of the hemagglutinin (H) protein. The ability to activate cells via TLR2 by wild-type MV H protein is(More)
By a contact-dependent surface interaction, the measles virus (MV) glycoprotein complex induces a pronounced inhibition of T-cell proliferation. We now show that MV directly interacts with glycosphingolipid-enriched membrane microdomains on human primary T cells and alters recruitment and segregation of membrane proximal signaling components.(More)
Surface-contact-mediated signaling induced by the measles virus (MV) fusion and hemagglutinin glycoproteins is necessary and sufficient to induce T-cell unresponsiveness in vitro and in vivo. To define the intracellular pathways involved, we analyzed interleukin (IL)-2R signaling in primary human T cells and in Kit-225 cells. Unlike IL-2-dependent(More)
Human volunteers receiving TGN1412, a humanized CD28-specific monoclonal antibody, experienced a life-threatening cytokine release syndrome during a recent trial. Preclinical tests using human PBMCs had failed to announce the rapid release of TNF, IFN-γ, and other toxic cytokines in response to this CD28 "superagonist" (CD28SA). CD28SA activate(More)
Immunosuppression is the major cause of infant death associated with acute measles. Hallmarks of this generalized modulation of immune functions include: (1) lymphopenia, (2) a prolonged cytokine imbalance consistent with suppression of cellular immunity to secondary infections and (3) silencing of peripheral blood lymphocytes that fail to expand in(More)
CD3/CD28-induced activation of the PI3/Akt kinase pathway and proliferation is impaired in T cells after contact with the measles virus (MV) glycoprotein (gp) complex. We now show that this signal also impairs actin cytoskeletal remodeling in T cells, which loose their ability to adhere and to promote microvilli formation. MV exposure results in an almost(More)
Silencing of T cell activation and function is a highly efficient strategy of immunosuppression induced by pathogens. By promoting formation of membrane microdomains essential for clustering of receptors and signalling platforms in the plasma membrane, ceramides accumulating as a result of membrane sphingomyelin breakdown are not only essential for assembly(More)
As pattern recognition receptor on dendritic cells (DCs), DC-SIGN binds carbohydrate structures on its pathogen ligands and essentially determines host pathogen interactions because it both skews T cell responses and enhances pathogen uptake for cis infection and/or T cell trans-infection. How these processes are initiated at the plasma membrane level is(More)
Viral entry, compartmentalization and transmission depend on the formation of membrane lipid/protein microdomains concentrating receptors and signalosomes. Dendritic cells (DCs) are prime targets for measles virus (MV) infection, and this interaction promotes immune activation and generalized immunosuppression, yet also MV transport to secondary lymphatics(More)
Interaction with dendritic cells (DCs) is considered as central to immunosuppression induced by viruses, including measles virus (MV). Commonly, viral infection of DCs abrogates their ability to promote T cell expansion, yet underlying mechanisms at a cellular level are undefined. We found that MV-infected DCs only subtly differed from LPS-matured with(More)